卷积神经网络(CNN)近年来取得了长足的发展,是深度学习中的一颗耀眼明珠。CNN不仅能用来对图像进行分类,还在图像分割(目标检测)任务中有着广泛的应用。CNN已经成为了图像分类的黄金标准,一直在不断的发展和改进。
刘昕博士总结了CNN的演化历史,如下图所示:
CNN的起点是神经认知机模型,此时已经出现了卷积结构,经典的LeNet诞生于1998年。然而之后CNN的锋芒开始被SVM等模型盖过。随着ReLU、dropout的提出,以及GPU和大数据带来的历史机遇,CNN在2012年迎来了历史突破:AlexNet。随后几年,CNN呈现爆发式发展,各种CNN模型涌现出来。
CNN的主要演进方向如下:
1、网络结构加深
2、加强卷积功能
3、从分类到检
CNN进化史
最新推荐文章于 2023-02-03 10:05:16 发布