A reversible prime in any number system is a prime whose "reverse" in that number system is also a prime. For example in the decimal system 73 is a reversible prime because its reverse 37 is also a prime.
Now given any two positive integers N (<105) and D (1<D≤10), you are supposed to tell if N is a reversible prime with radix D.
Input Specification:
The input file consists of several test cases. Each case occupies a line which contains two integers N and D. The input is finished by a negative N.
Output Specification:
For each test case, print in one line Yes
if N is a reversible prime with radix D, or No
if not.
Sample Input:
73 10
23 2
23 10
-2
Sample Output:
Yes
Yes
No
题解:
一开始想直接用库函数做进制转换,结果itor不是标准库里的,只好自己写了。
算法笔记第二次转成十进制的算法是: n = n*radix + d[i]; 也可以,相当于从高位到低位算加法。
有懂原理的小伙伴麻烦评论里指点一下!!!
#include <iostream>
#include <cmath>
using namespace std;
bool isPrime(int n) {
if (n <= 1) return false;
int sqr = (int)sqrt(1.0*n);
for (int i = 2; i <= sqr; i++)
{
if (n%i == 0) return false;
}
return true;
}
int d[111];
int main() {
int n, radix;
while (scanf("%d",&n) != EOF)
{
if (n < 0) break;
scanf("%d", &radix);
if (isPrime(n) == false) printf("No\n");
else
{
int len = 0;
do
{
d[len++] = n % radix;
n /= radix;
} while (n!=0);
for (int i = 0; i < len; i++)
n += d[i] * pow(radix, len - i - 1);
if(isPrime(n) == true) printf("Yes\n");
else printf("No\n");
}
}
return 0;
}