Simple Hooking of Functions not Exported by Ntoskrnl.exe

本文介绍了一种通过映射ntdll.dll到进程空间的方法来获取未导出的内核函数地址的技术。这种方法避免了硬编码位置的问题,并确保了在不同Windows版本间的一致性。
 As many of you will know, hooking functions not exported by ntoskrnl.exe is a real pain, as you need to hard code their position in KeServiceDescriptorTable, and this will change between windows releases.

Hardcoding the positions seems a poor solution, since it means after a new service pack, the rootkit may no longer work and become discovered.

As I have found the code on this site extremely helpful, I think it is only fair that I return the favour ;-)

I have implemented the method described in previous posts, whereby I have mapped a view of ntdll.dll into the process space of whoever loads the driver initially, and then retrieve the required function positions directly from the dll.

This was relatively simple to do, and only requires knowledge of the pe file format, and a few undocumented apis.

Using the function pasted below, when hooking you simply do as follows:


RtlInitUnicodeString(&dllName, L"//Device//HarddiskVolume1//Windows//System32//ntdll.dll");
functionAddress = GetDllFunctionAddress(functionName, &dllName);
position = *((WORD*)(functionAddress+1));
    
g_OriginalZwCreateProcessEx = (ZWCREATEPROCESSEX)(KeServiceDescriptorTable.ServiceTableBase[position]);


and here's the function GetDllFunctionAddress:


DWORD GetDllFunctionAddress(char* lpFunctionName, PUNICODE_STRING pDllName)
{
    HANDLE hThread, hSection, hFile, hMod;
    SECTION_IMAGE_INFORMATION sii;
    IMAGE_DOS_HEADER* dosheader;
    IMAGE_OPTIONAL_HEADER* opthdr;
    IMAGE_EXPORT_DIRECTORY* pExportTable;
    DWORD* arrayOfFunctionAddresses;
    DWORD* arrayOfFunctionNames;
    WORD* arrayOfFunctionOrdinals;
    DWORD functionOrdinal;
    DWORD Base, x, functionAddress;
    char* functionName;
    STRING ntFunctionName, ntFunctionNameSearch;
    PVOID BaseAddress = NULL;
    SIZE_T size=0;

    OBJECT_ATTRIBUTES oa = {sizeof oa, 0, pDllName, OBJ_CASE_INSENSITIVE};

    IO_STATUS_BLOCK iosb;

    //_asm int 3;
    ZwOpenFile(&hFile, FILE_EXECUTE | SYNCHRONIZE, &oa, &iosb, FILE_SHARE_READ, FILE_SYNCHRONOUS_IO_NONALERT);

    oa.ObjectName = 0;

    ZwCreateSection(&hSection, SECTION_ALL_ACCESS, &oa, 0,PAGE_EXECUTE, SEC_IMAGE, hFile);
    
    ZwMapViewOfSection(hSection, NtCurrentProcess(), &BaseAddress, 0, 1000, 0, &size, (SECTION_INHERIT)1, MEM_TOP_DOWN, PAGE_READWRITE);
    
    ZwClose(hFile);
    
    hMod = BaseAddress;
    
    dosheader = (IMAGE_DOS_HEADER *)hMod;
    
    opthdr =(IMAGE_OPTIONAL_HEADER *) ((BYTE*)hMod+dosheader->e_lfanew+24);

    pExportTable =(IMAGE_EXPORT_DIRECTORY*)((BYTE*) hMod + opthdr->DataDirectory[ IMAGE_DIRECTORY_ENTRY_EXPORT]. VirtualAddress);

    // now we can get the exported functions, but note we convert from RVA to address
    arrayOfFunctionAddresses = (DWORD*)( (BYTE*)hMod + pExportTable->AddressOfFunctions);

    arrayOfFunctionNames = (DWORD*)( (BYTE*)hMod + pExportTable->AddressOfNames);

    arrayOfFunctionOrdinals = (WORD*)( (BYTE*)hMod + pExportTable->AddressOfNameOrdinals);

    Base = pExportTable->Base;

    RtlInitString(&ntFunctionNameSearch, lpFunctionName);

    for(x = 0; x < pExportTable->NumberOfFunctions; x++)
    {
        functionName = (char*)( (BYTE*)hMod + arrayOfFunctionNames[x]);

        RtlInitString(&ntFunctionName, functionName);

        functionOrdinal = arrayOfFunctionOrdinals[x] + Base - 1; // always need to add base, -1 as array counts from 0
        // this is the funny bit.  you would expect the function pointer to simply be arrayOfFunctionAddresses[x]...
        // oh no... thats too simple.  it is actually arrayOfFunctionAddresses[functionOrdinal]!!
        functionAddress = (DWORD)( (BYTE*)hMod + arrayOfFunctionAddresses[functionOrdinal]);
        if (RtlCompareString(&ntFunctionName, &ntFunctionNameSearch, TRUE) == 0)
        {
            ZwClose(hSection);
            return functionAddress;
        }
    }

    ZwClose(hSection);
    return 0;
}
本项目采用C++编程语言结合ROS框架构建了完整的双机械臂控制系统,实现了Gazebo仿真环境下的协同运动模拟,并完成了两台实体UR10工业机器人的联动控制。该毕业设计在答辩环节获得98分的优异成绩,所有程序代码均通过系统性调试验证,保证可直接部署运行。 系统架构包含三个核心模块:基于ROS通信架构的双臂协调控制器、Gazebo物理引擎下的动力学仿真环境、以及真实UR10机器人的硬件接口层。在仿真验证阶段,开发了双臂碰撞检测算法和轨迹规划模块,通过ROS控制包实现了末端执行器的同步轨迹跟踪。硬件集成方面,建立了基于TCP/IP协议的实时通信链路,解决了双机数据同步和运动指令分发等关键技术问题。 本资源适用于自动化、机械电子、人工智能等专业方向的课程实践,可作为高年级课程设计、毕业课题的重要参考案例。系统采用模块化设计理念,控制核心与硬件接口分离架构便于功能扩展,具备工程实践能力的学习者可在现有框架基础上进行二次开发,例如集成视觉感知模块或优化运动规划算法。 项目文档详细记录了环境配置流程、参数调试方法和实验验证数据,特别说明了双机协同作业时的时序同步解决方案。所有功能模块均提供完整的API接口说明,便于使用者快速理解系统架构并进行定制化修改。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值