K-th Number --主席树求区间第k小

本文介绍了一道经典的算法题目——POJ 2104 K-th Number,并提供了详细的解题思路及代码实现。该题要求在给定的整数数组中快速找出指定区间内的第K小元素,通过使用主席树数据结构进行解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接 http://poj.org/problem?id=2104

K-th Number

Time Limit: 20000MS Memory Limit: 65536K
Total Submissions: 66823 Accepted: 23587
Case Time Limit: 2000MS

Description

You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

Input

The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

Output

For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

Sample Input

7 3
1 5 2 6 3 7 4
2 5 3
4 4 1
1 7 3

Sample Output

5
6
3

主席树模板题

两篇主席树的学习资料

https://blog.youkuaiyun.com/creatorx/article/details/75446472

https://blog.youkuaiyun.com/mdnd1234/article/details/69371626 ---这篇有分析的比较有理有据

尤其是这段话 让我恍然大悟

 

#include<algorithm>
#include<cstdio>
#include<cstring>

using namespace std;

const int maxn = 100011;

struct node
{
    int L,R;
    int sum;
    node()
    {
        this -> sum = 0;
    }
}t[maxn * 20];

struct value
{
    int x,id;
}Value[maxn];

int cnt;
int root[maxn],ran[maxn];

int cmp(value a,value b)
{
    return a.x < b.x;
}

void init()
{
    cnt = 1;
    root[0] = 0;
    t[0].L = t[0].R = t[0].sum = 0;
}

void update(int num,int &rt,int l,int r)
{
    t[cnt ++] = t[rt];
    rt = cnt - 1;

    t[rt].sum += 1;
    if(l == r)
        return ;
    int mid = (l + r) >> 1;

    if(num <= mid)
        update(num,t[rt].L,l,mid);
    else
        update(num,t[rt].R,mid + 1,r);
}

int query(int i,int j,int k,int l,int r)
{
    ///printf("%d %d %d %d||\n",i,j,l,r);

    if(l == r)
        return l;
    int d = t[t[j].L].sum - t[t[i].L].sum;

    int mid = (l + r)>>1;

    if(k <= d)
        return query(t[i].L,t[j].L,k,l,mid);
    else
        return query(t[i].R,t[j].R,k - d ,mid + 1,r);
}

int main()
{
    int n,m;
    scanf("%d %d",&n,&m);

    init();
    for(int i = 1;i <= n;i ++)
    {
        scanf("%d",&Value[i].x);

        Value[i].id = i;
    }

    sort(Value+1,Value + 1 + n,cmp);

    for(int i = 1;i <= n;i ++)
    {
        ran[ Value[i].id ] = i;
    }

    for(int i = 1;i <= n;i ++)
    {
        root[i] = root[i - 1];

        update(ran[i],root[i],1,n);
    }

    int left,right,k;
    for(int i = 1;i <= m;i ++)
    {
        scanf("%d %d %d",&left,&right,&k);

        printf("%d\n",Value[query(root[left - 1],root[right],k,1,n)].x);
    }

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值