Network virtualization, management silos and missed opportunities

本文深入探讨了云架构中位置感知的重要性,指出位置意识对于优化资源调度、提高性能和确保系统可靠性至关重要。通过对比不同云平台如OpenStack和Hadoop在位置感知方面的差异,文章强调了灵活组织在创造最优设计时愿意并有能力重组的重要性,同时警告云架构师避免陷入Conway定律的陷阱,即组织结构往往决定了其产品的设计特性。


Conway's law states that "organizations which design systems ... are constrained to produce designs which are copies of the communication structures of these organizations"
Figure 1: Management silos
Management silos described how the organization of operations teams into functional silos (network, storage and server groups) creates an inflexible management structure that makes it hard to deal with highly dynamic cloud architectures.
Figure 2: OpenStack Quantum Intro
When you look at the OpenStack architecture shown in Figure 2, it bears a strong resemblance to existing organizational silos. Is this really the best way to architect next generation cloud systems or is it simply a demonstration of Conway's law in action?

The OpenStack compute scheduler documentation describes the factors that can be included in deciding which compute node to use when starting a virtual machine. Notable by their absence is any mention of storage or network location. In contrast, the Hadoop scheduler is both storage and network topology aware, allowing it to place compute tasks close to storage and replicate data within racks for increased performance and across racks for availability. A previous article,  System boundary, discussed the importance of including all the tightly coupled network, storage, and compute resources within an integrated control system and  NUMA discussed the importance of location awareness for optimal performance.

Note: OpenStack was selected as a representative example to demonstrate architectural features that are common to many cloud stacks. This article shouldn't be seen as a specific criticism of OpenStack, but as a general discussion of cloud architectures.
Figure 3OpenStack Quantum Intro
OpenStack is still in active development, so one might hope that future schedulers will be enhanced to be more location aware as the network service matures. However, looking at Figure 3, it appears that this will not be possible since the APIs being developed to access the network service do not expose network topology or performance information to the scheduler.

Figure 4: VMware NSX Network Virtualization
Figure 4 shows how the situation becomes even worse as additional layers are added, further removing the scheduler from the information it needs to be location aware. In fact, the lack of location awareness is touted as an advantage, providing "A complete and feature rich virtual network can be defined at liberty from any constraints in physical switching infrastructure features, topologies or resources."

Each orchestration layer kicks the problem of network resource management down to lower layers, until you are left selecting from a range of vendor specific fabrics which also hide the network topology and present the abstraction of a single switch.
Figure 5: Juniper QFabric Architecture
On a slightly different tack, consider whether the organizational divisions in cloud orchestration systems are being justified based on one or more  Fallacies of Distributed Computing:
  1. The network is reliable
  2. Latency is zero
  3. Bandwidth is infinite
  4. The network is secure
  5. Topology doesn't change
  6. There is one administrator
  7. Transport cost is zero
  8. The network is homogeneous
A corollary to Conway's law is that flexible organizations are willing and able to reorganize to produce optimal designs. The  DevOps movement is breaking down the silos between application development and operations teams in order to improve the agility and reliability of cloud based applications. The standards for cloud computing are just starting to emerge and it would be tragic if the opportunity to deliver agile, robust, efficient and scaleable cloud systems is lost because of an inability to create the flexible, cross disciplinary design groups needed to re-imagine the relationship between networking, storage and computing and produce new architectures.

It is easy to be complacent based on the the buzz around cloud computing, software defined networking and the software defined data center. However, if these architectures don't deliver on their promise, there is competition waiting in the wings - see  Return of the Borg: How Twitter Rebuilt Google’s Secret Weapon. The difference is that these alternative architectures are being developed by flexible organizations that are prepared to consider all aspects of their stack in order to make disruptive improvements.

The unified visibility across all network, server, storage and application resources provided by the multi-vendor sFlow standard offers a solution.  Piercing through the layers of abstraction and architectural silos delivers the comprehensive  real-time analytics and location awareness for efficient scheduling. 
## 软件功能详细介绍 1. **文本片段管理**:可以添加、编辑、删除常用文本片段,方便快速调用 2. **分组管理**:支持创建多个分组,不同类型的文本片段可以分类存储 3. **热键绑定**:为每个文本片段绑定自定义热键,实现一键粘贴 4. **窗口置顶**:支持窗口置顶功能,方便在其他应用程序上直接使用 5. **自动隐藏**:可以设置自动隐藏,减少桌面占用空间 6. **数据持久化**:所有配置和文本片段会自动保存,下次启动时自动加载 ## 软件使用技巧说明 1. **快速添加文本**:在文本输入框中输入内容后,点击"添加内容"按钮即可快速添加 2. **批量管理**:可以同时编辑多个文本片段,提高管理效率 3. **热键冲突处理**:如果设置的热键与系统或其他软件冲突,会自动提示 4. **分组切换**:使用分组按钮可以快速切换不同类别的文本片段 5. **文本格式化**:支持在文本片段中使用换行符和制表符等格式 ## 软件操作方法指南 1. **启动软件**:双击"大飞哥软件自习室——快捷粘贴工具.exe"文件即可启动 2. **添加文本片段**: - 在主界面的文本输入框中输入要保存的内容 - 点击"添加内容"按钮 - 在弹出的对话框中设置热键和分组 - 点击"确定"保存 3. **使用热键粘贴**: - 确保软件处于运行状态 - 在需要粘贴的位置按下设置的热键 - 文本片段会自动粘贴到当前位置 4. **编辑文本片段**: - 选中要编辑的文本片段 - 点击"编辑"按钮 - 修改内容或热键设置 - 点击"确定"保存修改 5. **删除文本片段**: - 选中要删除的文本片段 - 点击"删除"按钮 - 在确认对话框中点击"确定"即可删除
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值