Description
Given a positive integer N, you should output the most right digit of N^N.
Input
The input contains several test cases. The first line of the input is a single integer T which is the number of test cases. T test cases follow.
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Each test case contains a single positive integer N(1<=N<=1,000,000,000).
Output
For each test case, you should output the rightmost digit of N^N.
Sample Input
2
3
4
Sample Output
7
6
Hint
In the first case, 3 * 3 * 3 = 27, so the rightmost digit is 7. In the second case, 4 * 4 * 4 * 4 = 256, so the rightmost digit is 6.
刚开始按传统方法,总是超时。。。不能暴力解决 比较大的不能用pow,结果为浮点型,精度不准确,只能保证前11位正确
超时代码:
#include<stdio.h>
int f(int b)
{
int i,t=1;
for(i=1;i<=b;i++)
t=t*b;
return t;
}
int main()
{
int a,n;
int t;
while(scanf("%d",&n)!=EOF)
{
while(n--)
{
scanf("%d",&a);
t=f(a)%10;
printf("%d\n",t);
}
}
return 0;
}
正确代码(参考代码):
可以发现一个规律: 当 n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 27 28 29 30 31 ... rdigit = 1 4 7 6 5 6 3 6 9 0 1 6 3 6 5 6 7 4 9 0 1 4 7 6 5 6 3 6 9 0 ... 所以是以20为周期的规律。这样就简单多了。。
下面是 m^n % k 的快速幂:模板
// m^n % k
int quickpow(int m,int n,int k)
{
int b = 1;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
下面是套用的模板,在杭电上提交不知道为啥是wrong answer请高手指点!!\(^o^)/~
#include<stdio.h>
int quickpow(int m,int n,int k)
{
int b = 1%k;
while (n > 0)
{
if (n & 1)
b = (b*m)%k;
n = n >> 1 ;
m = (m*m)%k;
}
return b;
}
int main()
{
int a,t,n;
scanf("%d",&n);
while(n--)
{
scanf("%d",&a);
t=quickpow(a,a,10);
printf("%d\n",t);
}
return 0;
}
下面也是套用模板,刚开始wrong answer why!!原来没有先对n,m取余,找了好久错误,哎。。。
#include<cstdio> int quickpow(int n,int m,int mod) { int b=1%mod,t=n%mod;n,m较大要先取余
while(m) { if(m&1) { b=(t*b)%mod;//2^10=2^8*2^2=((2^2)^2)^2*2^2;不断开出2; } base=(t*t)%mod; m>>=1;//右移一位,相当于除以2; } return b; } int main() { int a,n; scanf("%d",&n); while(n--) { scanf("%d",&a); printf("%d\n",quickpow(a,a,10)); } return 0; }

本文介绍了一种高效计算正整数N的N次方最右位数的方法,通过发现周期性规律避免了直接计算所带来的性能问题。
319

被折叠的 条评论
为什么被折叠?



