微信小程序开发教程——入门篇(二)

微信小程序开发教程——入门篇(二)

3.开发准备

(1)微信公众平台注册,申请 AppID

小程序开发的第一步,是去微信公众平台注册,申请一个 AppID,这是免费的。

申请完成以后,你会得到一个 AppID(小程序编号) 和 AppSecret(小程序密钥),后面都会用到。

(2)下载微信小程序开发工具

这个工具是必需的,因为只有它才能运行和调试小程序源码,安装好打开这个软件,会要求你使用微信扫描二维码登录。

登录后,进入新建项目的页面,可以新建不同的项目,默认是新建小程序项目。点击右侧的+号,就跳出了新建小程序的页面。如果直接新建小程序,会生成一个完整的项目脚手架。对于初学者来说,这样反而不利于掌握各个文件的作用。更好的学习方法是,自己从头手写每一行代码,然后切换到“导入项目”的选项,将其导入到开发者工具。

导入时,需要给小程序起一个名字,并且填写项目代码所在的目录,以及前面申请的 AppID。

(3)下载源码

如何从GitHub上下载来客源码并运行?

大家可以自己开发,如果没有开发可以直接下载我们开源版直接使用,这里咱们以我们源码为例。按照教程把相关环境部署好,后台安装好。

安装好后,配置小程序,把小程序的文件准备到目录下,微信开发者工具导入项目。AppID要换成自己的,不然会变成别的项目。

这里有详细教程,大家可以根据这个来。

(未完待续)

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值