2019ACL_Text Level Graph Neural Network for Text Classification阅读笔记

unofficial code: GitHub - Cynwell/Text-Level-GNN: Text Level Graph Neural Network for Text Classification

1 Main Contributions

  • Propose to produce a text level graph for each input text instead of building a single corpus level graph and thus reduce much GPU consumption.

  • The representation of the same nodes and weights of edges are shared globally and can be upd in the text level graphs through a message passing mechanism.

2 Method

Build text graph

build the text graph with a small window size

 

Message Passing Mechanism

This is the massage passing mechanism of the proposed GNN

Then,the summation of all node vectors is used as the graph-level representaion. 

3 Experiment

Overall performance

GPU consumption 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值