Problem Description
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
- Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
- Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题目大意
给你两个数N和K,每一分钟可以进行一种操作,操作包括以下三种:
假设当前的数为X:
①X=X+1;
②X=X-1;
③X=X*2;
问你从N开始经上述三种操作最短几分钟可以将N变为K。
思路
结合BFS的原理,只需要将这三种操作都进行BFS,第一个满足条件的过程所花费的分钟数一定是最短的。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
const int maxn=100010;
int vis[maxn],n,k;
int is(int x)
{
if(x<0 || x>=maxn || vis[x])
return 0;
return 1;
}
struct proc
{
int x,step;
};
int bfs(int s)
{
queue<proc> q;
proc vw,vn;
vw.x=s;
vw.step=0;
vis[s]=1;
q.push(vw);
while(!q.empty())
{
vw=q.front();
q.pop();
if(vw.x == k)
{
return vw.step;
}
vn=vw;
vn.x=vw.x+1;
if(is(vn.x))
{
vn.step=vw.step+1;
vis[vn.x]=1;
q.push(vn);
}
vn.x=vw.x-1;
if(is(vn.x))
{
vn.step=vw.step+1;
vis[vn.x]=1;
q.push(vn);
}
vn.x=vw.x*2;
if(is(vn.x))
{
vn.step=vw.step+1;
vis[vn.x]=1;
q.push(vn);
}
}
return -1;
}
int main()
{
while(~scanf("%d %d",&n,&k))
{
memset(vis,0,sizeof(vis));
int ans=bfs(n);
printf("%d\n",ans);
}
return 0;
}
本文介绍了一个基于广度优先搜索(BFS)的算法案例,通过该算法解决了一个有趣的数学问题:如何在最短时间内从一个初始位置通过特定的操作到达目标位置。详细解释了算法的实现过程,并提供了一段易于理解的C++代码。
1339

被折叠的 条评论
为什么被折叠?



