文章目录
细致地讨论一下用贝叶斯方法估计Poisson-HMM模型, 该问题来自 W. Zcchini 的 Hidden Markov Models for Time Series 一书第7章.
1. 问题概述
说是有一个 Poisson–HMM { X t } \{X_t\} { Xt} on m m m states, with underlying Markov chain { C t } \{C_t\} { Ct}. We denote the state-dependent means by λ = ( λ 1 , ⋯ , λ m ) \lambda =(\lambda_1, \cdots, \lambda_m) λ=(λ1,⋯,λm), and the transition probability matrix of the Markov chain by Γ \Gamma Γ.
假设 m m m 是已知的, { X t } \{X_t\} { Xt} 是一元的, 观测值为 X ( T ) = { X 1 , X 2 , ⋯ , X T } X^{(T)}=\{X_1, X_2, \cdots, X_T\} X(T)={ X1,X2,⋯,XT}.
2. 简要分析
要用贝叶斯方法估计该模型, 就是要获得从 Θ = { λ \Theta=\{\lambda Θ={ λ 和 Γ } \Gamma\} Γ} 的后验分布 P ( Θ ∣ X ( T ) ) P(\Theta \mid X^{(T)}) P(Θ∣X(T)) 里的大量抽样. 按贝叶斯方法套路, P ( Θ ∣ X ( T ) ) ∝ P ( X ( T ) ∣ Θ ) P ( Θ ) P(\Theta \mid X^{(T)}) \propto P(X^{(T)} \mid \Theta)P(\Theta) P(Θ∣X(T))∝P(X(T)∣Θ)P(Θ)
P ( X ( T ) ∣ Θ ) P(X^{(T)} \mid \Theta) P(X(T)∣Θ) 需要 summing over all possible sequences of latent states S ( T ) S^{(T)} S(T). If the time series has length T T T and there are m m m possible states, this sum is over m T m^T mT sequences, making direct computation intractable for long series. P ( X ( T ) ∣ Θ ) = ∑ S T P ( X ( T ) , S ( T ) ∣ Θ ) P(X^{(T)} \mid \Theta) = \sum_{S^T} P(X^{(T)}, S^{(T)} \mid \Theta) P(X(T)∣Θ)=ST∑P(X(T),S(T)∣Θ)
直接干不行, 需要退而从 P ( Θ , S ( T ) ∣ X ( T ) ) P(\Theta, S^{(T)} \mid X^{(T)}) P(Θ,S(T)∣X(T)) 这儿抽样, 理论推导见 Tanner and Wong (1987), 结论就是下面算法经过足够多次(burn-in)迭代后, { Θ g , Θ g + 1 , ⋯ } \{\Theta^{g}, \Theta^{g+1}, \cdots\} { Θg,Θg+1,⋯} 就是来自 p ( Θ ∣ X ( T ) ) p(\Theta \mid X^{(T)}) p(Θ∣X(T)) 的样本.
这个算法就是Gibbs sampling, 是个循环迭代过程:
- In order to obtain the posterior distribution p ( Θ ∣ X ( T ) ) p(\Theta \mid X^{(T)}) p(Θ∣X(T)), we have to initialize Θ \Theta Θ to Θ 1 \Theta^{1} Θ1 and get a sample of latent states S ( T ) , 1 S^{(T),1} S(T),1 from P ( S ( T ) ∣ X ( T ) , Θ 1 ) P(S^{(T)} \mid X^{(T)}, \Theta^{1}) P(S(T)∣X(T),Θ1).
- Then draw Θ 2 \Theta^{2} Θ2 (不是平方, 2是序号) from P ( Θ ∣ X ( T ) , S ( T ) , 1 ) P(\Theta \mid X^{(T)}, S^{(T),1}) P(Θ∣X(T),S(T),1) which utilizes the factorization of the complete-data likelihood and conjugate relationship of the prior and the posterior distribution of Θ \Theta Θ.
- P ( Θ ∣ X ( T ) , S ( T ) ) ∝ P ( X ( T ) , S ( T ) ∣ Θ ) P ( Θ ) P(\Theta \mid X^{(T)}, S^{(T)}) \propto P(X^{(T)}, S^{(T)} \mid \Theta) P(\Theta) P(Θ∣X(T),S(T))∝P(X(T),S(T)∣Θ)P(Θ)
- The complete-data likelihood P ( X ( T ) , S ( T ) ∣ Θ ) P(X^{(T)}, S^{(T)} \mid \Theta) P(X
贝叶斯推断用于泊松隐马尔可夫模型

最低0.47元/天 解锁文章
578

被折叠的 条评论
为什么被折叠?



