Reactor和Proactor

本文介绍Reactor和Proactor两种I/O多路复用模式。Reactor采用同步I/O,事件分离器等待文件描述符或socket就绪后,处理器完成读写。Proactor采用异步I/O,处理器发起异步读写操作,操作系统完成实际I/O工作后通知事件分离器。

1、标准定义

两种I/O多路复用模式:Reactor和Proactor

一般地,I/O多路复用机制都依赖于一个事件多路分离器(Event Demultiplexer)。分离器对象可将来自事件源的I/O事件分离出来,并分发到对应的read/write事件处理器(Event Handler)。开发人员预先注册需要处理的事件及其事件处理器(或回调函数);事件分离器负责将请求事件传递给事件处理器。两个与事件分离器有关的模式是Reactor和Proactor。Reactor模式采用同步IO,而Proactor采用异步IO。

在Reactor中,事件分离器负责等待文件描述符或socket为读写操作准备就绪,然后将就绪事件传递给对应的处理器,最后由处理器负责完成实际的读写工作。


而在Proactor模式中,处理器--或者兼任处理器的事件分离器,只负责发起异步读写操作。IO操作本身由操作系统来完成。传递给操作系统的参数需要包括用户定义的数据缓冲区地址和数据大小,操作系统才能从中得到写出操作所需数据,或写入从socket读到的数据。事件分离器捕获IO操作完成事件,然后将事件传递给对应处理器。比如,在windows上,处理器发起一个异步IO操作,再由事件分离器等待IOCompletion事件。典型的异步模式实现,都建立在操作系统支持异步API的基础之上,我们将这种实现称为“系统级”异步或“真”异步,因为应用程序完全依赖操作系统执行真正的IO工作。


举个例子,将有助于理解Reactor与Proactor二者的差异,以读操作为例(类操作类似)。
在Reactor中实现读:

- 注册读就绪事件和相应的事件处理器
- 事件分离器等待事件
- 事件到来,激活分离器,分离器调用事件对应的处理器。
- 事件处理器完成实际的读操作,处理读到的数据,注册新的事件,然后返还控制权。
在Proactor中实现读:

- 处理器发起异步读操作(注意:操作系统必须支持异步IO)。在这种情况下,处理器无视IO就绪事件,它关注的是完成事件。
- 事件分离器等待操作完成事件
- 在分离器等待过程中,操作系统利用并行的内核线程执行实际的读操作,并将结果数据存入用户自定义缓冲区,最后通知事件分离器读操作完成。
- 事件分离器呼唤处理器。
- 事件处理器处理用户自定义缓冲区中的数据,然后启动一个新的异步操作,并将控制权返回事件分离器。

可以看出,两个模式的相同点,都是对某个IO事件的事件通知(即告诉某个模块,这个IO操作可以进行或已经完成)。在结构上,两者也有相同点:demultiplexor负责提交IO操作(异步)、查询设备是否可操作(同步),然后当条件满足时,就回调handler;不同点在于,异步情况下(Proactor),当回调handler时,表示IO操作已经完成;同步情况下(Reactor),回调handler时,表示IO设备可以进行某个操作(can read or can write)。

2、通俗理解

使用Proactor框架和Reactor框架都可以极大的简化网络应用的开发,但它们的重点却不同。

Reactor框架中用户定义的操作是在实际操作之前调用的。比如你定义了操作是要向一个SOCKET写数据,那么当该SOCKET可以接收数据的时候,你的操作就会被调用;而Proactor框架中用户定义的操作是在实际操作之后调用的。比如你定义了一个操作要显示从SOCKET中读入的数据,那么当读操作完成以后,你的操作才会被调用。

Proactor和Reactor都是并发编程中的设计模式。在我看来,他们都是用于派发/分离IO操作事件的。这里所谓的IO事件也就是诸如read/write的IO操作。"派发/分离"就是将单独的IO事件通知到上层模块。两个模式不同的地方在于,Proactor用于异步IO,而Reactor用于同步IO。

3、备注

其实这两种模式在ACE(网络库)中都有体现;如果要了解这两种模式,可以参考ACE的源码,ACE是开源的网络框架,非常值得一学。。

【电力系统】单机无穷大电力系统短路故障暂态稳定Simulink仿真(带说明文档)内容概要:本文档围绕“单机无穷大电力系统短路故障暂态稳定Simulink仿真”展开,提供了完整的仿真模型与说明文档,重点研究电力系统在发生短路故障后的暂态稳定性问题。通过Simulink搭建单机无穷大系统模型,模拟不同类型的短路故障(如三相短路),分析系统在故障期间及切除后的动态响应,包括发电机转子角度、转速、电压功率等关键参数的变化,进而评估系统的暂态稳定能力。该仿真有助于理解电力系统稳定性机理,掌握暂态过程分析方法。; 适合人群:电气工程及相关专业的本科生、研究生,以及从事电力系统分析、运行与控制工作的科研人员工程师。; 使用场景及目标:①学习电力系统暂态稳定的基本概念与分析方法;②掌握利用Simulink进行电力系统建模与仿真的技能;③研究短路故障对系统稳定性的影响及提高稳定性的措施(如故障清除时间优化);④辅助课程设计、毕业设计或科研项目中的系统仿真验证。; 阅读建议:建议结合电力系统稳定性理论知识进行学习,先理解仿真模型各模块的功能与参数设置,再运行仿真并仔细分析输出结果,尝试改变故障类型或系统参数以观察其对稳定性的影响,从而深化对暂态稳定问题的理解。
本研究聚焦于运用MATLAB平台,将支持向量机(SVM)应用于数据预测任务,并引入粒子群优化(PSO)算法对模型的关键参数进行自动调优。该研究属于机器学习领域的典型实践,其核心在于利用SVM构建分类模型,同时借助PSO的全局搜索能力,高效确定SVM的最优超参数配置,从而显著增强模型的整体预测效能。 支持向量机作为一种经典的监督学习方法,其基本原理是通过在高维特征空间中构造一个具有最大间隔的决策边界,以实现对样本数据的分类或回归分析。该算法擅长处理小规模样本集、非线性关系以及高维度特征识别问题,其有效性源于通过核函数将原始数据映射至更高维的空间,使得原本复杂的分类问题变得线性可分。 粒子群优化算法是一种模拟鸟群社会行为的群体智能优化技术。在该算法框架下,每个潜在解被视作一个“粒子”,粒子群在解空间中协同搜索,通过不断迭代更新自身速度与位置,并参考个体历史最优解群体全局最优解的信息,逐步逼近问题的最优解。在本应用中,PSO被专门用于搜寻SVM中影响模型性能的两个关键参数——正则化参数C与核函数参数γ的最优组合。 项目所提供的实现代码涵盖了从数据加载、预处理(如标准化处理)、基础SVM模型构建到PSO优化流程的完整步骤。优化过程会针对不同的核函数(例如线性核、多项式核及径向基函数核等)进行参数寻优,并系统评估优化前后模型性能的差异。性能对比通常基于准确率、精确率、召回率及F1分数等多项分类指标展开,从而定量验证PSO算法在提升SVM模型分类能力方面的实际效果。 本研究通过一个具体的MATLAB实现案例,旨在演示如何将全局优化算法与机器学习模型相结合,以解决模型参数选择这一关键问题。通过此实践,研究者不仅能够深入理解SVM的工作原理,还能掌握利用智能优化技术提升模型泛化性能的有效方法,这对于机器学习在实际问题中的应用具有重要的参考价值。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值