Python图像处理库PIL中快速傅里叶变换FFT的实现(一)

本文介绍了快速傅里叶变换(FFT)在图像处理中的应用,特别是Python中的实现。通过FFT,可以将图像从时域转换到频域进行分析。文章详细阐述了FFT的原理,包括时间抽取法,以及如何通过蝶形运算优化计算过程。还给出了Python实现1D FFT的代码示例,并展示了输出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

离散傅里叶变换(discrete Fouriertransform)傅里叶分析方法是信号分析的最基本方法,傅里叶变换是傅里叶分析的核心,通过它把信号从时间域变换到频率域,进而研究信号的频谱结构和变化规律。FFT是一种DFT的高效算法,称为快速傅立叶变换(fastFourier transform)。

在数字图像处理中,FFT的使用非常普遍,是图像处理中最重要的算法之一。在此,我们对FFT算法做一些简单研究,并使用python实现该算法,同时会对图像进行变换分析。

一、FFT算法的原理

FFT算法可分为按时间抽取算法和按频率抽取算法,我们可以从DFT的运算,来FFT的基本原理。

DFT的计算公式如下:

式中

在这两个求和公式中,可以认为x(n)都是复数,两个复数乘法中,涉及4个乘法和3个加(减)法;再加上累加时的加法,对于每个K值,需要进行4N次实数相乘和(4N-1)次相加。对于Nk值,共需4N*N乘和N4N-1)次实数相加。如果按照复数来计算的话,对于一个N长的序列,直接计算DFT需要N2次复数乘法以及NN-1=N2次复数加法。

由于DFT中的运算量非常大,需要改进DFT算法来减小它的运算量。对于DFT的改进,可以利用DFT

       &nbs

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值