分布家族的伦理关系
回过头看这排版真是难受,用Markdown重新整理了一下排版:https://blog.youkuaiyun.com/ibelieve8013/article/details/102569844
浅谈两点分布,二项分布,伽马分布,指数分布,泊松分布,卡方分布,t分布,F分布,均匀分布,正态分布,β分布,狄利克雷分布。(红丸子,白丸子,四喜丸子。。。)
我们知道,在数理统计中,经常是和各种分布打交道,也经常搞清楚搞不清楚,我是谁,我在学什么,这些分布,到底是些什么关系?
最近在学随机过程又遇到了这个问题,虽然好像并没有什么太多关系,但是搞不清楚的,马马虎虎的感觉很不爽,而且什么鬼分布的概率密度函数,感觉记了一辈子都记不下来,记住又忘,记住又忘。所以本文的意图是要梳理这些分布的关系,以及他们代表的实际意义,还有加强对他们的概率密度函数,期望方差等的记忆。(很粗浅)
涉及的分布主要有:两点分布,二项分布,伽马分布,指数分布,泊松分布,卡方分布,t分布,F分布,均匀分布,正态分布,β分布,狄利克雷分布。(怎么这么多分布!)
好了,废话不多说,直接开干。
两点分布:
两点分布很简单,就是说一个实验有两种可能,非此即彼,概率分别是P和1-P,这个实验只做一次,ok,它就是服从两点分布。
二项分布:
但是,我要是要做多次呢,比如我要做n次独立重复的伯努利实验,那么我们就可以对实验成功的次数X构建一个二项分布,所以X的分布律是:
泊松分布:
说了二项分布,不得不说说泊松分布,这个分布是弄啥捏,就是描述一段时间内某个事件发生的次数的概率一个分布,故计数类的模型比较适合用泊松分布,等等,这个和二项分布有什么不一样吗?好像都是一个意思?其实确实是一个意思,只是我们知道,当
这个里面的n变得灰常大,这个公式就没眼看了,那么我们只能考虑一下变个形式:
注意,这里的lambda是