numpy.mean

本文详细介绍了numpy库中的mean函数,包括其参数、用法和常见应用场景。通过示例展示了如何计算一维数组和多维数组的平均值,以及不同参数设置的影响。此外,还探讨了在不同数据类型下计算平均值的精度问题。
部署运行你感兴趣的模型镜像

numpy.mean

numpy.mean(a, axis=None, dtype=None, out=None, keepdims=False)[source]
Compute the arithmetic mean along the specified axis.

Returns the average of the array elements. The average is taken over the flattened array by default, otherwise over the specified axis. float64 intermediate and return values are used for integer inputs.

Parameters:
a : array_like
Array containing numbers whose mean is desired. If a is not an array, a conversion is attempted.
axis : None or int or tuple of ints, optional
Axis or axes along which the means are computed. The default is to compute the mean of the flattened array.
If this is a tuple of ints, a mean is performed over multiple axes, instead of a single axis or all the axes as before.
dtype : data-type, optional
Type to use in computing the mean. For integer inputs, the default is float64; for floating point inputs, it is the same as the input dtype.
out : ndarray, optional
Alternate output array in which to place the result. The default is None; if provided, it must have the same shape as the expected output, but the type will be cast if necessary. See doc.ufuncs for details.
keepdims : bool, optional
If this is set to True, the axes which are reduced are left in the result as dimensions with size one. With this option, the result will broadcast correctly against the original arr.
Returns:
m : ndarray, see dtype parameter above
If out=None, returns a new array containing the mean values, otherwise a reference to the output array is returned.

a = np.array([[1, 2], [3, 4]])
np.mean(a)
2.5
np.mean(a, axis=0)
array([ 2., 3.])
np.mean(a, axis=1)
array([ 1.5, 3.5])

In single precision, mean can be inaccurate:

a = np.zeros((2, 512*512), dtype=np.float32)
a[0, :] = 1.0
a[1, :] = 0.1
np.mean(a)
0.546875

Computing the mean in float64 is more accurate:

np.mean(a, dtype=np.float64)
0.55000000074505806

您可能感兴趣的与本文相关的镜像

Stable-Diffusion-3.5

Stable-Diffusion-3.5

图片生成
Stable-Diffusion

Stable Diffusion 3.5 (SD 3.5) 是由 Stability AI 推出的新一代文本到图像生成模型,相比 3.0 版本,它提升了图像质量、运行速度和硬件效率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值