题意:
求数组中和最大的连续子数组。
思路:
1.动态规划: 之前的数字和小于0,则重新开始。否则累加。一个变量记录当前的和,另一个变量记录当前最大值。
2. 分治:当前数组的最大和子数组来自于左子数或右子数组,或包含中间值的某数组。
代码:
动态规划:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int len = nums.size();
int ans = nums[0];
int cur = nums[0];
for (int i=1; i<len; ++i) {
if (cur >= 0) cur += nums[i];
else cur = nums[i];
ans = max(cur, ans);
}
return ans;
}
};
分治:
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int l = 0;
int r = nums.size() - 1;
return maxSub(nums, l, r);
}
int maxSub(vector<int>& nums, int l, int r) {
if (l == r) return nums[l];
int mid = (l + r) / 2;
int temp = max(maxSub(nums, l, mid), maxSub(nums, mid+1, r));
return max(temp, maxMid(nums, l, mid, r));
}
int maxMid(vector<int>& nums, int l, int mid, int r) {
int maxLeft = nums[mid];
int temp = nums[mid];
for (int i=mid-1; i>=l; --i) {
temp += nums[i];
maxLeft = max(temp, maxLeft);
}
temp = 0;
int maxRight = 0;
for (int i=mid+1; i<=r; ++i) {
temp += nums[i];
maxRight = max(temp, maxRight);
}
return maxLeft + maxRight;
}
};
看提交信息的话…还是动态规划更快哎。