【面试题】判断图中是否有环

本文详细介绍了在无向图和有向图中检测环的方法,包括通过删除低度顶点、利用栈进行拓扑排序以及采用深度优先搜索(DFS)策略。对于无向图,通过迭代删除度数小于等于1的顶点及其关联边来简化图结构,直至剩余部分揭示是否存在环。有向图则通过计算入度并运用栈进行拓扑排序,若排序完成则图无环。此外,深度优先搜索策略结合白、灰、黑三色标记法,有效检测图中的环路。

无向图

  • 求出图中所有顶点的度;
  • 删除图中所有度≤1的顶点且与该顶点相关的边,把与这些边相关的顶点的度-1;
  • 如果还有度≤1的顶点,重复步骤2;
  • 如果最后还存在未被删除的顶点,表示有环,否则无环。

有向图

  • 计算图中所有点的入度,把入度为0的点加入栈;
  • 如果栈非空:
    • 取出栈顶顶点a,输出该顶点值删除该顶点;
    • 从图中删除所有以a为起始点的边,如果删除过程中遇到另一个顶点入度为0,则把它入栈;
  • 如果图中还存在顶点,表示图中有环。否则输出的顶点就是一个拓扑排序序列。

无向图和有向图通用的解法,DFS

深度优先遍历该图,如果在遍历的过程中,发现某个节点有一条边指向已经访问过的节点,并且这个已访问过的节点不是当前节点的父节点(这里的父节点表示dfs遍历顺序中的父节点),则表示存在环。但是我们不能仅仅使用一个bool数组来标志节点是否访问过。对每个节点分为三种状态,白、灰、黑。
开始时所有节点都是白色,当开始访问某个节点时该节点变为灰色,当该节点的所有邻接点都访问完,该节点颜色变为黑色。
那么我们的算法则为:如果遍历的过程中发现某个节点有一条边指向颜色为灰的节点,那么存在环。

代码:

stack<int> tuopu;
 
void dfsVisit(vector<vector<int> >&graph, int node, vector<int>&visit,
               vector<int>&father)
{
    int n = graph.size();
    visit[node] = 1;
    //cout<<node<<"-\n";
    for(int i = 0; i < n; i++)
        if(i != node && graph[node][i] != INT_MAX)
        {
            if(visit[i] == 1 && i != father[node])//找到一个环
            {
                int tmp = node;
                cout<<"cycle: ";
                while(tmp != i)
                {
                    cout<<tmp<<"->";
                    tmp = father[tmp];
                }
                cout<<tmp<<endl;
            }
            else if(visit[i] == 0)
            {
                father[i] = node;
                dfsVisit(graph, i, visit, father);
            }
        }
    visit[node] = 2;
    tuopu.push(node);
}
 
void dfs(vector<vector<int> >&graph)
{
    int n = graph.size();
    vector<int> visit(n, 0); //visit按照算法导论22.3节分为三种状态
    vector<int> father(n, -1);// father[i] 记录遍历过程中i的父节点
    for(int i = 0; i < n; i++)
        if(visit[i] == 0)
            dfsVisit(graph, i, visit, father);
}

转载自:http://www.cnblogs.com/TenosDoIt/p/3644225.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值