详解编辑距离问题(动态规划)

本文深入解析编辑距离算法,探讨序列S和T之间的相似度衡量方式,通过定义编辑操作(删除、插入、替换)来计算最小编辑距离。文章提供最优解结构分析、递推公式,并附带C++实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

问题描述:

对于序列S和T, 它们之间的距离定义为: 对二者其一进行几次以下操作: 1, 删除一个字符; 2, 插入一个字符; 3, 改变一个字符. 每进行一次操作, 计数增加1. 将S和T变为相等序列的最小计数就是两者的编辑距离(edit distance)或者叫相似度. 请给出相应算法及其实现.

分析:

最优解的结构分析

假设序列S和T的长度分别为m和n, 两者的编辑距离表示为edit[m][n]. 则对序列进行操作时存在以下几种情况:

  1. 当S和T的末尾字符相等时, 对末尾字符不需要进行上述定义操作中(亦即"编辑")的任何一个, 也就是不需要增加计数. 则满足条件: edit[m][n] = edit[m - 1][n - 1].

  2. 当S和T的末尾字符不相等时, 则需要对两者之一的末尾进行编辑, 相应的计数会增加1.

     ① 对S或T的末尾进行修改, 以使之与T或S相等, 则此时edit[m][n] = edit[m - 1][n - 1] + 1;
    
     ②删除S末尾的元素,或者在T末尾添加元素, 使S与T相等, 则此时edit[m][n] = edit[m - 1][n] + 1;
    
     ③删除T末尾的元素, 或者在T末尾添加元素, 使T与S相等, 则此时edit[m][n] = edit[m][n - 1] + 1; 
    
  3. 比较特殊的情况是, 当S为空时, edit[0][n] = n; 而当T为空时, edit[m][0] = m; 这个很好理解, 例如对于序列"“和"abc”, 则两者的最少操作为3, 即序列""进行3次插入操作, 或者序列"abc"进行3次删除操作.

最优值的递推公式
在这里插入图片描述
求最优解
最优值中的最大值

代码

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define N 9999
char a[N],b[N];
int f[N][N];
int main()
{

	cin>>a;
	cin>>b;
	int m=strlen(a);
	int n=strlen(b);
	for(int i=1;i<=n;i++)
		f[i][0]=i;
	for(int j=1;j<=n;j++)
		f[0][j]=j;
	for(int i=1;i<=m;i++)
	{
		for(int j=1;j<=n;j++)
		{
			if(a[i-1]==b[j-1])
               f[i][j]=f[i-1][j-1];
			else
			   f[i][j]=min(min(f[i-1][j-1],f[i-1][j]),f[i][j-1])+1;
		}
	}cout<<f[m][n];

}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值