中间生成

下面为中间生成节点:

      pnode = ^tnode;
      { basic class for the intermediated representation fpc uses }
      tnode = class
      private
         fppuidx : longint;        ppu的索引
         function getppuidx:longint;
      public
         { type of this node }
         nodetype : tnodetype;    节点类型
         { type of the current code block, general/const/type }
         blocktype : tblock_type;    块类型
         { expected location of the result of this node (pass1) }
         expectloc : tcgloc;    异常存储位置类型
         { the location of the result of this node (pass2) }
         location : tlocation;    存储位置
         { the parent node of this is node    }
         { this field is set by concattolist  }
         parent : tnode;    父节点
         { next node in control flow on the same block level, i.e.
           for loop nodes, this is the next node after the end of the loop,
           same for if and case, if this field is nil, the next node is the procedure exit,
           for the last node in a loop this is set to the loop header
           this field is set only for control flow nodes }
         successor : tnode;    后继节点
         { there are some properties about the node stored }
         flags  : tnodeflags;    节点属性
         resultdef     : tdef;    返回类型定义
         resultdefderef : tderef;    返回类型解定义
         fileinfo      : tfileposinfo;    文件信息
         localswitches : tlocalswitches;    局部开关
         verbosity     : longint;    打印信息属性
         optinfo : poptinfo;        优化信息
         constructor create(t:tnodetype);
         { this constructor is only for creating copies of class }
         { the fields are copied by getcopy                      }
         constructor createforcopy;
         constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);virtual;
         destructor destroy;override;
         procedure ppuwrite(ppufile:tcompilerppufile);virtual;
         procedure buildderefimpl;virtual;
         procedure derefimpl;virtual;
         procedure resolveppuidx;virtual;

         { toggles the flag }
         procedure toggleflag(f : tnodeflag);

         { the 1.1 code generator may override pass_1 }
         { and it need not to implement det_* then    }
         { 1.1: pass_1 returns a value<>0 if the node has been transformed }
         { 2.0: runs pass_typecheck and det_temp                           }
         function pass_1 : tnode;virtual;abstract;
         { dermines the resultdef of the node }
         function pass_typecheck : tnode;virtual;abstract;

         { tries to simplify the node, returns a value <>nil if a simplified
           node has been created }
         function simplify(forinline : boolean) : tnode;virtual;
{$ifdef state_tracking}
         { Does optimizations by keeping track of the variable states
           in a procedure }
         function track_state_pass(exec_known:boolean):boolean;virtual;
{$endif}
         { For a t1:=t2 tree, mark the part of the tree t1 that gets
           written to (normally the loadnode) as write access. }
         procedure mark_write;virtual;
         { dermines the number of necessary temp. locations to evaluate
           the node }
         procedure det_temp;virtual;abstract;

         procedure pass_generate_code;virtual;abstract;

         { comparing of nodes }
         function isequal(p : tnode) : boolean;
         { to implement comparisation, override this method }
         function docompare(p : tnode) : boolean;virtual;
         { wrapper for getcopy }
         function getcopy : tnode;

         { does the real copying of a node }
         function dogetcopy : tnode;virtual;

         { returns the real loadn/temprefn a node refers to,
           skipping (absolute) equal type conversions        }
         function actualtargetnode: tnode;virtual;

         procedure insertintolist(l : tnodelist);virtual;
         { writes a node for debugging purpose, shouldn't be called }
         { direct, because there is no test for nil, use printnode  }
         { to write a complete tree }
         procedure printnodeinfo(var t:text);virtual;
         procedure printnodedata(var t:text);virtual;
         procedure printnodetree(var t:text);virtual;
         procedure concattolist(l : tlinkedlist);virtual;
         function ischild(p : tnode) : boolean;virtual;

         { ensures that the optimizer info record is allocated }
         function allocoptinfo : poptinfo;inline;
         property ppuidx:longint read getppuidx;
      end;

      tnodeclass = class of tnode;

      tnodeclassarray = array[tnodetype] of tnodeclass;

    单叉
      { this node is the anchestor for all nodes with at least   }
      { one child, you have to use it if you want to use         }
      { true- and current_procinfo.CurrFalseLabel                                     }
      punarynode = ^tunarynode;
      tunarynode = class(tnode)
         left : tnode;            左节点
         constructor create(t:tnodetype;l : tnode);
         constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
         destructor destroy;override;
         procedure ppuwrite(ppufile:tcompilerppufile);override;
         procedure buildderefimpl;override;
         procedure derefimpl;override;
         procedure concattolist(l : tlinkedlist);override;
         function ischild(p : tnode) : boolean;override;
         function docompare(p : tnode) : boolean;override;
         function dogetcopy : tnode;override;
         procedure insertintolist(l : tnodelist);override;
         procedure printnodedata(var t:text);override;
      end;

    二叉树
      pbinarynode = ^tbinarynode;
      tbinarynode = class(tunarynode)
         right : tnode;            右节点
         constructor create(t:tnodetype;l,r : tnode);    
         constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
         destructor destroy;override;
         procedure ppuwrite(ppufile:tcompilerppufile);override;
         procedure buildderefimpl;override;
         procedure derefimpl;override;
         procedure concattolist(l : tlinkedlist);override;
         function ischild(p : tnode) : boolean;override;
         function docompare(p : tnode) : boolean;override;
         procedure swapleftright;
         function dogetcopy : tnode;override;
         procedure insertintolist(l : tnodelist);override;
         procedure printnodedata(var t:text);override;
         procedure printnodelist(var t:text);
      end;

    三叉树    
      ptertiarynode = ^ttertiarynode;
      ttertiarynode = class(tbinarynode)
         third : tnode;            第三节点
         constructor create(_t:tnodetype;l,r,t : tnode);
         constructor ppuload(t:tnodetype;ppufile:tcompilerppufile);override;
         destructor destroy;override;
         procedure ppuwrite(ppufile:tcompilerppufile);override;
         procedure buildderefimpl;override;
         procedure derefimpl;override;
         procedure concattolist(l : tlinkedlist);override;
         function ischild(p : tnode) : boolean;override;
         function docompare(p : tnode) : boolean;override;
         function dogetcopy : tnode;override;
         procedure insertintolist(l : tnodelist);override;
         procedure printnodedata(var t:text);override;
      end;


    操作节点
      tbinopnode = class(tbinarynode)
         constructor create(t:tnodetype;l,r : tnode);virtual;
         function docompare(p : tnode) : boolean;override;
      end;   



    注册所有类型中间生成节点
   procedure registernodes;
      {
        Register all possible nodes in the nodeclass array that
        will be used for loading the nodes from a ppu
      }
      begin
        nodeclass[addn]:=caddnode;
        nodeclass[muln]:=caddnode;
        nodeclass[subn]:=caddnode;
        nodeclass[divn]:=cmoddivnode;
        nodeclass[symdifn]:=caddnode;
        nodeclass[modn]:=cmoddivnode;
        nodeclass[assignn]:=cassignmentnode;
        nodeclass[loadn]:=cloadnode;
        nodeclass[rangen]:=crangenode;
        nodeclass[ltn]:=caddnode;
        nodeclass[lten]:=caddnode;
        nodeclass[gtn]:=caddnode;
        nodeclass[gten]:=caddnode;
        nodeclass[equaln]:=caddnode;
        nodeclass[unequaln]:=caddnode;
        nodeclass[inn]:=cinnode;
        nodeclass[orn]:=caddnode;
        nodeclass[xorn]:=caddnode;
        nodeclass[shrn]:=cshlshrnode;
        nodeclass[shln]:=cshlshrnode;
        nodeclass[slashn]:=caddnode;
        nodeclass[andn]:=caddnode;
        nodeclass[subscriptn]:=csubscriptnode;
        nodeclass[derefn]:=cderefnode;
        nodeclass[addrn]:=caddrnode;
        nodeclass[ordconstn]:=cordconstnode;
        nodeclass[typeconvn]:=ctypeconvnode;
        nodeclass[calln]:=ccallnode;
        nodeclass[callparan]:=ccallparanode;
        nodeclass[realconstn]:=crealconstnode;
        nodeclass[unaryminusn]:=cunaryminusnode;
        nodeclass[unaryplusn]:=cunaryplusnode;
        nodeclass[asmn]:=casmnode;
        nodeclass[vecn]:=cvecnode;
        nodeclass[pointerconstn]:=cpointerconstnode;
        nodeclass[stringconstn]:=cstringconstnode;
        nodeclass[notn]:=cnotnode;
        nodeclass[inlinen]:=cinlinenode;
        nodeclass[niln]:=cnilnode;
        nodeclass[errorn]:=cerrornode;
        nodeclass[typen]:=ctypenode;
        nodeclass[setelementn]:=csetelementnode;
        nodeclass[setconstn]:=csetconstnode;
        nodeclass[blockn]:=cblocknode;
        nodeclass[statementn]:=cstatementnode;
        nodeclass[ifn]:=cifnode;
        nodeclass[breakn]:=cbreaknode;
        nodeclass[continuen]:=ccontinuenode;
        nodeclass[whilerepeatn]:=cwhilerepeatnode;
        nodeclass[forn]:=cfornode;
        nodeclass[exitn]:=cexitnode;
        nodeclass[withn]:=cwithnode;
        nodeclass[casen]:=ccasenode;
        nodeclass[labeln]:=clabelnode;
        nodeclass[goton]:=cgotonode;
        nodeclass[tryexceptn]:=ctryexceptnode;
        nodeclass[raisen]:=craisenode;
        nodeclass[tryfinallyn]:=ctryfinallynode;
        nodeclass[onn]:=connode;
        nodeclass[isn]:=cisnode;
        nodeclass[asn]:=casnode;
        nodeclass[starstarn]:=caddnode;
        nodeclass[arrayconstructorn]:=carrayconstructornode;
        nodeclass[arrayconstructorrangen]:=carrayconstructorrangenode;
        nodeclass[tempcreaten]:=ctempcreatenode;
        nodeclass[temprefn]:=ctemprefnode;
        nodeclass[tempdeleten]:=ctempdeletenode;
        nodeclass[addoptn]:=caddnode;
        nodeclass[nothingn]:=cnothingnode;
        nodeclass[loadvmtaddrn]:=cloadvmtaddrnode;
        nodeclass[guidconstn]:=cguidconstnode;
        nodeclass[rttin]:=crttinode;
        nodeclass[loadparentfpn]:=cloadparentfpnode;
      end;                         
内容概要:论文提出了一种基于空间调制的能量高效分子通信方案(SM-MC),将传输符号分为空间符号和浓度符号。空间符号通过激活单个发射纳米机器人的索引来传输信息,浓度符号则采用传统的浓度移位键控(CSK)调制。相比现有的MIMO分子通信方案,SM-MC避免了链路间干扰,降低了检测复杂度并提高了性能。论文分析了SM-MC及其特例SSK-MC的符号错误率(SER),并通过仿真验证了其性能优于传统的MIMO-MC和SISO-MC方案。此外,论文还探讨了分子通信领域的挑战、优势及相关研究工作,强调了空间维度作为新的信息自由度的重要性,并提出了未来的研究方向和技术挑战。 适合人群:具备一定通信理论基础,特别是对纳米通信和分子通信感兴趣的科研人员、研究生和工程师。 使用场景及目标:①理解分子通信中空间调制的工作原理及其优势;②掌握SM-MC系统的具体实现细节,包括发射、接收、检测算法及性能分析;③对比不同分子通信方案(如MIMO-MC、SISO-MC、SSK-MC)的性能差异;④探索分子通信在纳米网络中的应用前景。 其他说明:论文不仅提供了详细的理论分析和仿真验证,还给出了具体的代码实现,帮助读者更好地理解和复现实验结果。此外,论文还讨论了分子通信领域的标准化进展,以及未来可能的研究方向,如混合调制方案、自适应调制技术和纳米机器协作协议等。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值