最短路径Floyd算法分析(转)

Floyd最短路径算法详解

Floyd最短路径算法

     在图论中经常会遇到这样的问题,在一个有向图里,求出任意两个节点之间的最短距离。我们在离散数学、数据结构课上都遇到过这个问题,在计算机网络里介绍网络层的时候好像也遇到过这个问题,记不请了... 但是书本上一律采取的是Dijkstra算法,通过Dijkstra算法可以求出单源最短路径,然后逐个节点利用Dijkstra算法就可以了。不过在这里想换换口味,采取Robert Floyd提出的算法来解决这个问题。下面让我们先把问题稍微的形式化一下:
      如果有一个矩阵D=[d(ij)],其中d(ij)>0表示i城市到j城市的距离。若i与j之间无路可通,那么d(ij)就是无穷大。又有d(ii)=0。编写一个程序,通过这个距离矩阵D,把任意两个城市之间的最短与其行径的路径找出来。
     我们可以将问题分解,先找出最短的距离,然后在考虑如何找出对应的行进路线。如何找出最短路径呢,这里还是用到动态规划的知识,对于任何一个城市而言,i到j的最短距离不外乎存在经过i与j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(ij)与d(ik)+d(kj)的值;在此d(ik)与d(kj)分别是目前为止所知道的i到k与k到j的最短距离,因此d(ik)+d(kj)就是i到j经过k的最短距离。所以,若有d(ij)>d(ik)+d(kj),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(ij)重写为d(ik)+d(kj),每当一个k查完了,d(ij)就是目前的i到j的最短距离。重复这一过程,最后当查完所有的k时,d(ij)里面存放的就是i到j之间的最短距离了。所以我们就可以用三个for循环把问题搞定了,但是有一个问题需要注意,那就是for循环的嵌套的顺序:我们可能随手就会写出这样的程序,但是仔细考虑的话,会发现是有问题的。

                     for(int i=0; i<n; i++)
                           for(int j=0; j<n; j++)
                                for(int k=0; k<n; k++)   
    

     问题出在我们太早的把i-k-j的距离确定下来了,假设一旦找到了i-p-j最短的距离后,i到j就相当处理完了,以后不会在改变了,一旦以后有使i到j的更短的距离时也不能再去更新了,所以结果一定是不对的。所以应当象下面一样来写程序:

                    for(int k=0; k<n; k++)
                         for(int i=0; i<n; i++)
                              for(int j=0; j<n; j++) 

    这样作的意义在于固定了k,把所有i到j而经过k的距离找出来,然后象开头所提到的那样进行比较和重写,因为k是在最外层的,所以会把所有的i到j都处理完后,才会移动到下一个k,这样就不会有问题了,看来多层循环的时候,我们一定要当心,否则很容易就弄错了。
     接下来就要看一看如何找出最短路径所行经的城市了,这里要用到另一个矩阵P,它的定义是这样的:p(ij)的值如果为p,就表示i到j的最短行经为i->...->p->j,也就是说p是i到j的最短行径中的j之前的最后一个城市。P矩阵的初值为p(ij)=i。有了这个矩阵之后,要找最短路径就轻而易举了。对于i到j而言找出p(ij),令为p,就知道了路径i->...->p->j;再去找p(ip),如果值为q,i到p的最短路径为i->...->q->p;再去找p(iq),如果值为r,i到q的最短路径为i->...->r->q;所以一再反复,到了某个p(it)的值为i时,就表示i到t的最短路径为i->t,就会的到答案了,i到j的最短行径为i->t->...->q->p->j。因为上述的算法是从终点到起点的顺序找出来的,所以输出的时候要把它倒过来。
     但是,如何动态的回填P矩阵的值呢?回想一下,当d(ij)>d(ik)+d(kj)时,就要让i到j的最短路径改为走i->...->k->...->j这一条路,但是d(kj)的值是已知的,换句话说,就是k->...->j这条路是已知的,所以k->...->j这条路上j的上一个城市(即p(kj))也是已知的,当然,因为要改走i->...->k->...->j这一条路,j的上一个城市正好是p(kj)。所以一旦发现d(ij)>d(ik)+d(kj),就把p(kj)存入p(ij)。

   #include               
   #include              
   #include              
   #define   MAXSIZE   20          
  
   void  floyd(int [][MAXSIZE], int [][MAXSIZE], int);  
   void  display_path(int [][MAXSIZE], int [][MAXSIZE], int);  
   void  reverse(int [], int);  
   void  readin(int [][MAXSIZE], int *);  
 
   #define   MAXSUM(a, b)   (((a) != INT_MAX && (b) != INT_MAX) ? \  
                          ((a) + (b)) : INT_MAX)  
  
   void floyd(int dist[][MAXSIZE], int path[][MAXSIZE], int n)  
   {  
       int  i, j, k;  
       for (i = 0; i < n; i++)    
           for (j = 0; j < n; j++)  
               path[i][j] = i;  
       for (k = 0; k < n; k++)    
           for (i = 0; i < n; i++)   
               for (j = 0; j < n; j++)    
                    if (dist[i][j] > MAXSUM(dist[i][k], dist[k][j]))   
                    {  
                         path[i][j] = path[k][j];   
                         dist[i][j] = MAXSUM(dist[i][k], dist[k][j]);  
                    }  
   }  
  
   void display_path(int dist[][MAXSIZE], int path[][MAXSIZE], int n)  
   {  
       int  *chain;  
       int  count;  
       int  i, j, k;  
       printf("\n\nOrigin->Dest   Dist   Path");  
       printf(  "\n-----------------------------");  
       chain = (int *) malloc(sizeof(int)*n);  
       for (i = 0; i < n; i++)   
           for (j = 0; j < n; j++)  
           {  
               if (i != j)  
               {    
                    printf("\n%6d->%d    ", i+1, j+1);  
                    if (dist[i][j] == INT_MAX)   
                         printf("  NA    ");   
                    else  
                    {  
                         printf("%4d    ", dist[i][j]);  
                         count = 0;     
                         k = j;  
                         do  
                         {  
                             k = chain[count++] = path[i][k];  
                         } while (i != k);  
                         reverse(chain, count);   
                         printf("%d", chain[0]+1);   
                         for (k = 1; k < count; k++)  
                              printf("->%d", chain[k]+1);  
                         printf("->%d", j+1);  
                    }  
               }  
           }  
       free(chain);               
   }  
 
   #define SWAP(a, b)  { temp = a; a = b; b = temp; }  
  
   void reverse(int x[], int n)  
   {  
       int  i, j, temp;  
       for (i = 0, j = n-1; i < j; i++, j--)  
            SWAP(x[i], x[j]);  
   }  
  
   void readin(int dist[][MAXSIZE], int *number)  
   {  
       int  origin, dest, length, n;  
       int  i, j;  
       char line[100];  
       gets(line);                
       sscanf(line, "%d", &n);  
       *number = n;  
       for (i = 0; i < n; i++)   
       {  
           for (j = 0; j < n; j++)  
                dist[i][j] = INT_MAX;  
           dist[i][i] = 0;       
       }  
       gets(line);                
       sscanf(line, "%d%d%d", &origin, &dest, &length);  
       while (origin != 0 && dest != 0 && length != 0)  
       {  
          dist[origin-1][dest-1] = length;  
          gets(line);           
          sscanf(line, "%d%d%d", &origin, &dest, &length);  
       }  
   }  
     //测试程序如下所示:  
   int main(void)  
   {  
       int dist[MAXSIZE][MAXSIZE];  
       int path[MAXSIZE][MAXSIZE];  
       int n;  
       printf("\nInput the path information:");  
       printf("\n----------------------------\n");  
       readin(dist, &n);  
       floyd(dist, path, n);  
       display_path(dist, path, n);  
       getchar();  
   }  

 

  1.     其中readin函数规定了输入的格式,第一列是指出有多少个城市;第二列以后每行三个数;第一个和第二个是一条路径的起点和终点,第三个数是路径的长度,最后以三个0作为输入结束条件。下面是一个输入的例子:  
  2.               Input the path information:  
  3.             --------------------------------------  
  4.               4  
  5.               1          2          5  
  6.               2          1          50  
  7.               2          3          15  
  8.               2          4          5  
  9.               3          1          30  
  10.               3          4          15  
  11.               4          1          15  
  12.               4          3          5  
  13.               0          0          0  
  14.    对应的输出结果为:  
  15.      Origin->Dest      Dist          Path  
  16.   ----------------------------------------------  
  17.         1->2             5           1->2  
  18.         1->3            15          1->2->4->3  
  19.         1->4            10          1->2->4  
  20.         2->1            20          2->4->1  
  21.         2->3            10          2->4->3  
  22.         2->4             5           2->4  
  23.         3->1            30          3->1  
  24.         3->2            35          3->1->2  
  25.         3->4            15          3->4  
  26.         4->1            15          4->1  
  27.         4->2            20          4->1->2  
  28.         4->3             5           4->3  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值