A Simple Math Problem
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4597 Accepted Submission(s): 2777
Problem Description
Lele now is thinking about a simple function f(x).
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
If x < 10 f(x) = x.
If x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + …… + a9 * f(x-10);
And ai(0<=i<=9) can only be 0 or 1 .
Now, I will give a0 ~ a9 and two positive integers k and m ,and could you help Lele to caculate f(k)%m.
Input
The problem contains mutiple test cases.Please process to the end of file.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
In each case, there will be two lines.
In the first line , there are two positive integers k and m. ( k<2*10^9 , m < 10^5 )
In the second line , there are ten integers represent a0 ~ a9.
Output
For each case, output f(k) % m in one line.
Sample Input
10 9999 1 1 1 1 1 1 1 1 1 1 20 500 1 0 1 0 1 0 1 0 1 0
Sample Output
45 104
思路:快速矩阵幂,递归会超时
#include <bits/stdc++.h> using namespace std; const int N=10; long long int mod; struct M{ long long int m[N][N]; }; M I={1,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,1,0, 0,0,0,0,0,0,0,0,0,1,}; M A={0,0,0,0,0,0,0,0,0,0, //所求矩阵 1,0,0,0,0,0,0,0,0,0, 0,1,0,0,0,0,0,0,0,0, 0,0,1,0,0,0,0,0,0,0, 0,0,0,1,0,0,0,0,0,0, 0,0,0,0,1,0,0,0,0,0, 0,0,0,0,0,1,0,0,0,0, 0,0,0,0,0,0,1,0,0,0, 0,0,0,0,0,0,0,1,0,0, 0,0,0,0,0,0,0,0,1,0}; M fun(M a,M b) //a*b矩阵 { M c; for(int i=0;i<N;i++) { for(int j=0;j<N;j++) { c.m[i][j]=0; for(int k=0;k<N;k++) { c.m[i][j]+=a.m[i][k]*b.m[k][j]%mod; } c.m[i][j]%=mod; } } return c; } M power( int k) //快速矩阵幂 { M ans=I,p=A; while(k) { if(k&1) { ans=fun(ans,p); k--; } k>>=1; p=fun(p,p); } return ans; } int main() { long long int n; while(~scanf("%lld %lld",&n,&mod)) { M ans; long long int ret=0; for(int i=0;i<10;i++) scanf("%d",&A.m[0][i]); if(n<10) //特殊情况 { cout<<n%mod<<"\n"; continue; } ans=power(n-9); //注意 for(int i=0;i<10;i++) { ret+=(ans.m[0][i]*(9-i))%mod; } cout<<ret%mod<<"\n"; } return 0; }