题目描述:
题意:给定n组x,y,z问能否找一个整数d,使得至少两组x,y,z满足y<=d%x<=z。
这题主要就是推理的工程,我们先假设存在两组x,y,z分别为:x1,y1,z1.x2,y2,z2.如果这两组满足y<=d%x<=z的话,假设d/x1=t1,d/x2=t2那么不等式可化成y1<=d-t1x1<=z1,y2<=d-t2x2<=z2。再移一下项,y1+t1x1<=d<=z1+t1x1,y2+t2x2<=d<=z2+t2x2。由此可以得到y1+t1x1<=z2+t2x2,y2+t2x2<=z1+t1x1,再移项得到t1x1-t2x2<=z2-y1,t1x1-t2x2>=y2-z1。即y2-z1<=t1x1-t2x2<=z2-y1。假设t1x1-t2x2=k。这显然又是一个应用扩展欧几里德的方程,x1,x2都已知要使方程有解,则k/gcd(x1,x2)==0,同时y2-z1<=k<=z2-y1即可,所以我们只需要枚举x1,x2然后一次检验就好了。
AC代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<string>
#include<cmath>
#include<stack>
#include<queue>
#include<algorithm>
using namespace std;
int n;
int x[1010],y[1010],z[1010];
int gcd(int a,int b)
{
return b==0? a:gcd(b,a%b);
}
bool check(int l,int r,int t)
{
for (int i=l;i<=r;i++)
if (i%t==0) return true;
return false;
}
int main()
{
while(scanf("%d",&n)!=EOF)
{
bool flag=false;
for (int i=1;i<=n;i++)
scanf("%d%d%d",&x[i],&y[i],&z[i]);
for (int i=1;i<=n;i++)
{
for (int j=i+1;j<=n;j++)
{
int t=gcd(x[i],x[j]);
int l=y[j]-z[i];
int r=z[j]-y[i];
if (check(l,r,t))
{
flag=true;
break;
}
}
}
if (flag) printf("Cannot Take off\n");
else printf("Can Take off\n");
}
return 0;
}