[Python] example-one File"<stdin>",line 1错误

博客提到在Python中出现了File“<stdin>”,line1错误,这属于信息技术领域中Python编程方面的问题。
部署运行你感兴趣的模型镜像

出现File“<stdin>”,line1错误


您可能感兴趣的与本文相关的镜像

Python3.8

Python3.8

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

import os.path >>> >>> # ruff: noqa: E402 >>> import json_numpy >>> >>> json_numpy.patch() >>> import json >>> import logging >>> import traceback >>> from dataclasses import dataclass >>> from pathlib import Path >>> from typing import Any, Dict, Optional, Union >>> >>> import draccus >>> import torch >>> import uvicorn Traceback (most recent call last): File "<stdin>", line 1, in <module> ModuleNotFoundError: No module named 'uvicorn' >>> from fastapi import FastAPI Traceback (most recent call last): File "<stdin>", line 1, in <module> ModuleNotFoundError: No module named 'fastapi' >>> from fastapi.responses import JSONResponse Traceback (most recent call last): File "<stdin>", line 1, in <module> ModuleNotFoundError: No module named 'fastapi' >>> from PIL import Image >>> from transformers import AutoModelForVision2Seq, AutoProcessor 2025-06-20 14:49:54.539927: I tensorflow/core/util/port.cc:113] oneDNN custom operations are on. You may see slightly different numerical results due to floating-point round-off errors from different computation orders. To turn them off, set the environment variable `TF_ENABLE_ONEDNN_OPTS=0`. WARNING:tensorflow:From E:\Miniconda3\envs\openvla\lib\site-packages\keras\src\losses.py:2976: The name tf.losses.sparse_softmax_cross_entropy is deprecated. Please use tf.compat.v1.losses.sparse_softmax_cross_entropy instead. >>> >>> # === Utilities === >>> SYSTEM_PROMPT = ( ... "A chat between a curious user and an artificial intelligence assistant. " ... "The assistant gives helpful, detailed, and polite answers to the user's questions." ... ) >>> >>> >>> def get_openvla_prompt(instruction: str, openvla_path: Union[str, Path]) -> str: ... if "v01" in openvla_path: ... return f"{SYSTEM_PROMPT} USER: What action should the robot take to {instruction.lower()}? ASSISTANT:" ... else: ... return f"In: What action should the robot take to {instruction.lower()}?\nOut:" ... >>> >>> # === Server Interface === >>> class OpenVLAServer: ... def __init__(self, openvla_path: Union[str, Path], attn_implementation: Optional[str] = "flash_attention_2") -> Path: ... """ ... A simple server for OpenVLA models; exposes `/act` to predict an action for a given image + instruction. ... => Takes in {"image": np.ndarray, "instruction": str, "unnorm_key": Optional[str]} ... => Returns {"action": np.ndarray} ... """ ... self.openvla_path, self.attn_implementation = openvla_path, attn_implementation ... self.device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu") ... >>> # Load VLA Model using HF AutoClasses >>> self.processor = AutoProcessor.from_pretrained(self.openvla_path, trust_remote_code=True) File "<stdin>", line 1 self.processor = AutoProcessor.from_pretrained(self.openvla_path, trust_remote_code=True) IndentationError: unexpected indent >>> self.vla = AutoModelForVision2Seq.from_pretrained( File "<stdin>", line 1 self.vla = AutoModelForVision2Seq.from_pretrained( IndentationError: unexpected indent >>> self.openvla_path, File "<stdin>", line 1 self.openvla_path, IndentationError: unexpected indent >>> attn_implementation=attn_implementation, File "<stdin>", line 1 attn_implementation=attn_implementation, IndentationError: unexpected indent >>> torch_dtype=torch.bfloat16, File "<stdin>", line 1 torch_dtype=torch.bfloat16, IndentationError: unexpected indent >>> low_cpu_mem_usage=True, File "<stdin>", line 1 low_cpu_mem_usage=True, IndentationError: unexpected indent >>> trust_remote_code=True, File "<stdin>", line 1 trust_remote_code=True, IndentationError: unexpected indent >>> ).to(self.device) File "<stdin>", line 1 ).to(self.device) IndentationError: unexpected indent >>> >>> # [Hacky] Load Dataset Statistics from Disk (if passing a path to a fine-tuned model) >>> if os.path.isdir(self.openvla_path): File "<stdin>", line 1 if os.path.isdir(self.openvla_path): IndentationError: unexpected indent >>> with open(Path(self.openvla_path) / "dataset_statistics.json", "r") as f: File "<stdin>", line 1 with open(Path(self.openvla_path) / "dataset_statistics.json", "r") as f: IndentationError: unexpected indent >>> self.vla.norm_stats = json.load(f) File "<stdin>", line 1 self.vla.norm_stats = json.load(f) IndentationError: unexpected indent >>> >>> def predict_action(self, payload: Dict[str, Any]) -> str: File "<stdin>", line 1 def predict_action(self, payload: Dict[str, Any]) -> str: IndentationError: unexpected indent >>> try: File "<stdin>", line 1 try: IndentationError: unexpected indent >>> if double_encode := "encoded" in payload: File "<stdin>", line 1 if double_encode := "encoded" in payload: IndentationError: unexpected indent >>> # Support cases where `json_numpy` is hard to install, and numpy arrays are "double-encoded" as strings >>> assert len(payload.keys()) == 1, "Only uses encoded payload!" File "<stdin>", line 1 assert len(payload.keys()) == 1, "Only uses encoded payload!" IndentationError: unexpected indent >>> payload = json.loads(payload["encoded"]) File "<stdin>", line 1 payload = json.loads(payload["encoded"]) IndentationError: unexpected indent >>> >>> # Parse payload components >>> image, instruction = payload["image"], payload["instruction"] File "<stdin>", line 1 image, instruction = payload["image"], payload["instruction"] IndentationError: unexpected indent >>> unnorm_key = payload.get("unnorm_key", None) File "<stdin>", line 1 unnorm_key = payload.get("unnorm_key", None) IndentationError: unexpected indent >>> >>> # Run VLA Inference >>> prompt = get_openvla_prompt(instruction, self.openvla_path) File "<stdin>", line 1 prompt = get_openvla_prompt(instruction, self.openvla_path) IndentationError: unexpected indent >>> inputs = self.processor(prompt, Image.fromarray(image).convert("RGB")).to(self.device, dtype=torch.bfloat16) File "<stdin>", line 1 inputs = self.processor(prompt, Image.fromarray(image).convert("RGB")).to(self.device, dtype=torch.bfloat16) IndentationError: unexpected indent >>> action = self.vla.predict_action(**inputs, unnorm_key=unnorm_key, do_sample=False) File "<stdin>", line 1 action = self.vla.predict_action(**inputs, unnorm_key=unnorm_key, do_sample=False) IndentationError: unexpected indent >>> if double_encode: File "<stdin>", line 1 if double_encode: IndentationError: unexpected indent >>> return JSONResponse(json_numpy.dumps(action)) File "<stdin>", line 1 return JSONResponse(json_numpy.dumps(action)) IndentationError: unexpected indent >>> else: File "<stdin>", line 1 else: IndentationError: unexpected indent >>> return JSONResponse(action) File "<stdin>", line 1 return JSONResponse(action) IndentationError: unexpected indent >>> except: # noqa: E722 File "<stdin>", line 1 except: # noqa: E722 IndentationError: unexpected indent >>> logging.error(traceback.format_exc()) File "<stdin>", line 1 logging.error(traceback.format_exc()) IndentationError: unexpected indent >>> logging.warning( File "<stdin>", line 1 logging.warning( IndentationError: unexpected indent >>> "Your request threw an error; make sure your request complies with the expected format:\n" File "<stdin>", line 1 "Your request threw an error; make sure your request complies with the expected format:\n" IndentationError: unexpected indent >>> "{'image': np.ndarray, 'instruction': str}\n" File "<stdin>", line 1 "{'image': np.ndarray, 'instruction': str}\n" IndentationError: unexpected indent >>> "You can optionally an `unnorm_key: str` to specific the dataset statistics you want to use for " File "<stdin>", line 1 "You can optionally an `unnorm_key: str` to specific the dataset statistics you want to use for " IndentationError: unexpected indent >>> "de-normalizing the output actions." File "<stdin>", line 1 "de-normalizing the output actions." IndentationError: unexpected indent >>> ) File "<stdin>", line 1 ) IndentationError: unexpected indent >>> return "error" File "<stdin>", line 1 return "error" IndentationError: unexpected indent >>> >>> def run(self, host: str = "0.0.0.0", port: int = 8000) -> None: File "<stdin>", line 1 def run(self, host: str = "0.0.0.0", port: int = 8000) -> None: IndentationError: unexpected indent >>> self.app = FastAPI() File "<stdin>", line 1 self.app = FastAPI() IndentationError: unexpected indent >>> self.app.post("/act")(self.predict_action) File "<stdin>", line 1 self.app.post("/act")(self.predict_action) IndentationError: unexpected indent >>> uvicorn.run(self.app, host=host, port=port) File "<stdin>", line 1 uvicorn.run(self.app, host=host, port=port) IndentationError: unexpected indent >>> >>> >>> @dataclass ... class DeployConfig: ... # fmt: off ... openvla_path: Union[str, Path] = "openvla/openvla-7b" # HF Hub Path (or path to local run directory) ... >>> # Server Configuration >>> host: str = "0.0.0.0" # Host IP Address File "<stdin>", line 1 host: str = "0.0.0.0" # Host IP Address IndentationError: unexpected indent >>> port: int = 8000 # Host Port File "<stdin>", line 1 port: int = 8000 # Host Port IndentationError: unexpected indent >>> >>> # fmt: on >>> >>> >>> @draccus.wrap() ... def deploy(cfg: DeployConfig) -> None: ... server = OpenVLAServer(cfg.openvla_path) ... server.run(cfg.host, port=cfg.port) ... >>> >>> if __name__ == "__main__": ... deploy() ...
06-21
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值