evict的逻辑是这样的:遍历cache中的所有block,根据它们所属的级别(single,multi,in-memory)分拨到三个优先级队列中,队头元素是最旧(最近访问日间值最小)的那个block。对这个三队列依次驱逐对头元素,释放空间。
所以说:in-memory的block与其他类型的block并无本质上的不同,它不会长久驻留cache而不被逐出cache, 当不断有新的in-memory的block被访问,而现有in-memory cache已达到上限时,旧的in-memory block就会被替换出去,除非,所有in-memory的block的总体积小于in-memory cache。
但是in-memory的block确实不同于其他两种block的地方在于它的这个“in-memory”特征是静态指定的(在column family上设置),不会像其他两种cache会因访问频率而发生改变,这就决定了它的独立性,另外两种block访问次数再多也不会被放到in-memory的区段里去,in-memory的block不管是第几次访问,总是被放置到in-memory的区段中。
从in-memory cache的这些特性上来看,需要特别强调的是:
1. 标记IN_MEMORY=>'true'的column family的总体积最好不要超过in-memory cache的大小(in-memory cache = heap size * hfile.block.cache.size * 0.85 * 0.25),特别是当总体积远远大于了in-memory cache时,会在in-memory cache上发生严重的颠簸。
2. 换个角度再看,普遍提到的使用in-memory cache的场景是把元数据表的column family声明为IN_MEMORY=>'true。实际上这里的潜台词是:元数据表都很小。其时我们也可以大胆地把一些需要经常访问的,总体积不会超过in-memory cache的column family都设为IN_MEMORY=>'true'从而更加充分地利用cache空间。就像前面提到的,普通的block永远是不会被放入in-memory cache的,只存放少量metadata是对in-memory cache资源的浪费(未来的版本应该提供三种区段的比例配置功能)。
1.2 Row Key
HBase中row key用来检索表中的记录,支持以下三种方式:
- 通过单个row key访问:即按照某个row key键值进行get操作;
- 通过row key的range进行scan:即通过设置startRowKey和endRowKey,在这个范围内进行扫描;
- 全表扫描:即直接扫描整张表中所有行记录。
在HBase中,row key可以是任意字符串,最大长度64KB,实际应用中一般为10~100bytes,存为byte[]字节数组,一般设计成定长的。
row key是按照字典序存储,因此,设计row key时,要充分利用这个排序特点,将经常一起读取的数据存储到一块,将最近可能会被访问的数据放在一块。
举个例子:如果最近写入HBase表中的数据是最可能被访问的,可以考虑将时间戳作为row key的一部分,由于是字典序排序,所以可以使用Long.MAX_VALUE – timestamp作为row key,这样能保证新写入的数据在读取时可以被快速命中。
1.3 Column Family
不要在一张表里定义太多的column family。目前Hbase并不能很好的处理超过2~3个column family的表。因为某个column family在flush的时候,它邻近的column family也会因关联效应被触发flush,最终导致系统产生更多的I/O。感兴趣的同学可以对自己的HBase集群进行实际测试,从得到的测试结果数据验证一下。
1.4 In Memory
创建表的时候,可以通过HColumnDescriptor.setInMemory(true)将表放到RegionServer的缓存中,保证在读取的时候被cache命中。
1.5 Max Version
创建表的时候,可以通过HColumnDescriptor.setMaxVersions(int maxVersions)设置表中数据的最大版本,如果只需要保存最新版本的数据,那么可以设置setMaxVersions(1)。
1.6 Time To Live
创建表的时候,可以通过HColumnDescriptor.setTimeToLive(int timeToLive)设置表中数据的存储生命期,过期数据将自动被删除,例如如果只需要存储最近两天的数据,那么可以设置setTimeToLive(2 * 24 * 60 * 60)。