浅谈对于RDD的认识

浅谈对于RDD的认识

RDD(Resilient Distributed Datasets)弹性分布式数据集,是在集群应用中分享数据的一种高效,通用,容错的抽象,是Spark提供的最重要的抽象的概念,它是一种有容错机制的特殊集合,可以分布在集群的节点上,以函数式编操作集合的方式,进行各种并行操作。

RDD是只读的,不可变的数据集。RDD也是容错的,假如其中一个RDD坏掉,RDD中有记录之前的依赖关系,依赖关系中记录算子和分区,可以重新生成。RDD实现分布式数据集容错方法有两种:数据检查点和记录更新。同时RDD是高效的,不需要物化。它也是分区记录的集合,可以缓存的。

       每个RDD都包含有一组RDD分区(partition),数据集的原子组成部分,还有对父RDD的一组依赖,这些依赖描述了RDD的Lineage;以及一个函数,说明在父RDD上执行何种计算;还包含元数据,描述分区模式和数据存放的位置。

RDD之间的依赖关系分为宽依赖和窄依赖两类。对于窄依赖,子RDD的每个分区依赖于常数个父分区,它与数据规模无关。输入输出是一对一的算子,但是其中一种方式的结果RDD的分区结构不变,主要是map,flatMap。但是如union,coalesce结果RDD的分区结构会发生变化。对于宽依赖,子RDD的每个分区都依赖于所有的父RDD分区。

对于两种依赖关系,窄依赖允许在一个集群节点上以流水线的方式(pipeline)计算所有父分区。而宽依赖则需要首先计算好所有父分区数据,然后在节点之间进行Shuffle。窄依赖能够更有效地进行失效节点的恢复,重新计算丢失RDD分区的父分区,而且不同节点之间可以并行计算;而对于一个宽依赖关系的Lineage图,单个节点失效可能导致这个RDD的所有祖先丢失部分分区,因而需要整体重新计算。

       同时RDD有五个特征,其中分区,一系列的依赖关系和函数是三个基本特征,最佳位置和分区策略是可选。RDD是移动计算而不是移动数据。

      RDD和spark之间,RDD是一种具有容错性基于内存的集群计算抽象方法,Spark则是这个抽象方法的实现。




为了查找与测绘遥感相关的SCI期刊列表,可以通过学术搜索引擎或访问特定的数据库来获得最新的信息。通常这些资源会定期更新以反映最新收录情况。 些常用的搜索方式包括: 查阅Web of Science (WOS) 数据库 这是最直接的方法之,因为Science Citation Index(SCI)正是由该数据库维护。可以在其中设置关键词为"remote sensing", "surveying and mapping" 或者更具体的主题术语,并选择仅显示被SCI索引的文章和期刊。 利用Google Scholar 虽然不是专门针对SCI期刊,但可以找到很多高影响力的测绘遥感类文章及其发表刊物的信息。从这里也可以了解到哪些是活跃且受认可的研究领域内的出版物。 参考Journal Citation Reports (JCR) 这是个评估科学和技术期刊影响力的重要工具。通过查看影响因子和其他指标,可以帮助确定哪些测绘遥感领域的期刊最具权威性并且属于SCI范畴。 咨询图书馆员或专业人士 大学或研究机构的专业人员能够提供指导和支持,帮助定位最适合需求的具体期刊名称及详情。 订阅行业通讯和服务 某些服务如Elsevier's Scopus也会报告关于各个学科顶级期刊的消息,保持关注可以获得及时的通知。 以下是几个知名的测绘遥感相关SCI期刊的例子: - Remote Sensing of Environment - IEEE Transactions on Geoscience and Remote Sensing - ISPRS Journal of Photogrammetry and Remote Sensing - International Journal of Applied Earth Observation and Geoinformation 请注意,实际的SCI期刊名单可能会随着时间而变化,因此建议总是使用最新的在线资源来进行确认。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值