Tomcat 启动 超慢

本文描述了一次服务器启动异常缓慢的问题排查过程。作者通过调整log4j的日志级别至debug,发现加载struts配置文件耗时较长。进一步检查发现由于海外网络故障导致DTD文件加载缓慢,通过将DTD文件切换为本地版本解决了该问题。

昨天启动服务器,发现服务器启动超慢,大约要40分钟才能启动起来.
Log4j的日志到Parsing configuration file [struts-plugin.xml]就不动了.
我感到很奇怪,因为我并未对程序作过更改,以前是能正常启动的.
接下来,我把log4j的日志级别调到debug级别,发现时间主要消耗在Loading action configurations from ....

我更感到奇怪,打开action配置文件struts-**.xml.看到半天,没发现什么不对的地方.
中午吃饭的时候,突然想起最近中美海缆通信损坏了,北美乃至欧洲通信中断了.
可能是struts-**.xml中http://struts.apache.org/dtds/struts-2.0.dtd这个地方的原因.连不上外国的http://struts.apache.org.
接着狼吞虎咽,几口把饭吃完,跑到楼上改成本地的struts-2.0.再重新启动服务器,果然好了.

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值