URAL 1009 K-based Numbers dp练习

本文介绍了如何计算在给定的进制和位数条件下,形成的有效数字总数,有效数字定义为不包含连续两个零的数字。通过动态规划的方法,逐步构建解,最终得出所需答案。
Let’s consider K-based numbers, containing exactly N digits. We define a number to be valid if its K-based notation doesn’t contain two successive zeros. For example:
  • 1010230 is a valid 7-digit number;
  • 1000198 is not a valid number;
  • 0001235 is not a 7-digit number, it is a 4-digit number.
Given two numbers N and K, you are to calculate an amount of valid K based numbers, containing N digits.

You may assume that 2 ≤ K ≤ 10; N ≥ 2; N + K ≤ 18.

 题意问的是在不出现连续0的条件下 k进制的N位数共有多少个

                     对于第N个数来说    如果之前的数即N-1位为0 则 dp[N] 加上 dp[N-2] 的k-1倍

                      如果N-1不为0 则加上dp[N-1]的 k-1倍

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
ll dp[50];
int main()
{
    int n ,  k ;
    while(scanf("%d%d",&n,&k)!=EOF)
    {
        dp[1] = k - 1;
        dp[2] = k * dp[1];
        for(int i = 3; i <= n; i++)
        {
            dp[i] = (k-1)*(dp[i-1]+dp[i-2]);
        }
        printf("%I64d\n",dp[n]);
    }
    return 0;
}

 
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值