二叉树查询,遍历代码实现

 

二叉树的概念

  • 1)如果该二叉树的所有子节点都在最后一层,并且点总数= 2^n -1 , n 为层数,则我们称为满二叉树。
  • 2)果该二叉树的所有叶子节点都在最后一层或者倒数第二层,而且最后一层的叶子节点在左边连续,倒数第二层的叶子节点在右边连续,我们称为完全二叉树。

二叉树遍历

前序遍历: 先输出父节点,再遍历左子树和右子树

序遍历: 先遍历左子树,再输出父节点,再遍历右子树

序遍历: 先遍历左子树,再遍历右子树,最后输出父节点

小结: 看输出父节点的顺序,就确定是前序,中序还是后序

思路:

前序遍历

//编写前序遍历的方法
    public void preOrder() {
        System.out.println(this); //先输出父结点
        //递归向左子树前序遍历
        if(this.left != null) {
            this.left.preOrder();
        }
        //递归向右子树前序遍历
        if(this.right != null) {
            this.right.preOrder();
        }
    }

中序遍历 

//中序遍历
    public void infixOrder() {

        //递归向左子树中序遍历
        if(this.left != null) {
            this.left.infixOrder();
        }
        //输出父结点
        System.out.println(this);
        //递归向右子树中序遍历
        if(this.right != null) {
            this.right.infixOrder();
        }
    }

后续遍历

//后序遍历
    public void postOrder() {
        if(this.left != null) {
            this.left.postOrder();
        }
        if(this.right != null) {
            this.right.postOrder();
        }
        System.out.println(this);
    }

二叉树查找思路分析

 

public HeroNode preOrderSearch(int no) {
        System.out.println("进入前序遍历");
        //比较当前结点是不是
        if(this.no == no) {
            return this;
        }
        //1.则判断当前结点的左子节点是否为空,如果不为空,则递归前序查找
        //2.如果左递归前序查找,找到结点,则返回
        HeroNode resNode = null;
        if(this.left != null) {
            resNode = this.left.preOrderSearch(no);
        }
        if(resNode != null) {//说明我们左子树找到
            return resNode;
        }
        //1.左递归前序查找,找到结点,则返回,否继续判断,
        //2.当前的结点的右子节点是否为空,如果不空,则继续向右递归前序查找
        if(this.right != null) {
            resNode = this.right.preOrderSearch(no);
        }
        return resNode;
    }

 删除结点思路

 

   思路

  •             1. 因为我们的二叉树是单向的,所以我们是判断当前结点的子结点是否需要删除结点,而不能去判断当前这个结点  是不是需要删除结点.
  •             2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
  •             3. 如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
  •             4. 如果第2和第3步没有删除结点,那么我们就需要向左子树进行递归删除
  •             5.  如果第4步也没有删除结点,则应当向右子树进行递归删除.

         

 

 public void delNode(int no) {

        //2. 如果当前结点的左子结点不为空,并且左子结点 就是要删除结点,就将this.left = null; 并且就返回(结束递归删除)
        if(this.left != null && this.left.no == no) {
            this.left = null;
            return;
        }
        //3.如果当前结点的右子结点不为空,并且右子结点 就是要删除结点,就将this.right= null ;并且就返回(结束递归删除)
        if(this.right != null && this.right.no == no) {
            this.right = null;
            return;
        }
        //4.我们就需要向左子树进行递归删除
        if(this.left != null) {
            this.left.delNode(no);
        }
        //5.则应当向右子树进行递归删除
        if(this.right != null) {
            this.right.delNode(no);
        }
    }

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值