题目大意:给你一张图,一个人走过之后路径的费用会增加,问有2个人走,最小的总费用是多少。
算法思路:一开始准备跑2遍dijkstra,每次求最小的费用,不知道为什么这样一直WA,最后问了一下别人,发现是用最小费用最大流,每个点之间连接2条边,一条是走之前正常的路,另一条是走完这条路后增加了费用的路,因为有2个人,因此超级源点与起点的容量为2,超级汇点与终点的容量为2,跑一遍最小费用最大流的模板就可以。
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
using namespace std;
#define MAXN 10000
#define MAXM 100000
#define INF 0x3f3f3f3f
struct Edge
{
int u;
int v;
int cap;
int cost;
int flow;
};
Edge edges[MAXM];
int n,m,a,b,c,add,e,ans,s,t;
int pre[MAXN];
int head[MAXN],nnext[MAXM],dist[MAXN];
bool visited[MAXN];
void addEdge(int u,int v,int cap,int cost)
{
edges[e].v=v;
edges[e].cap=cap;
edges[e].cost=cost;
edges[e].flow=0;
nnext[e]=head[u];
head[u]=e++;
edges[e].v=u;
edges[e].cap=0;
edges[e].cost=-cost;
edges[e].flow=0;
nnext[e]=head[v];
head[v]=e++;
}
bool spfa(int src, int x)
{
queue<int>q;
for(int i = src; i <=x; i++)
{
dist[i] = INF;
visited[i] = false;
pre[i] = -1;
}
dist[src] = 0;
visited[src] = true;
q.push(src);
while(!q.empty())
{
int u = q.front();
q.pop();
visited[u] = false;
for(int i = head[u]; i!=-1; i=nnext[i])
{
int v = edges[i].v;
if(edges[i]. cap > edges[i].flow &&
dist[v] > dist[u] + edges[i].cost )
{
dist[v] = dist[u] + edges[i].cost;
pre[v] = i;
if(!visited[v])
{
visited[v] = true;
q.push(v);
}
}
}
}
if(pre[x] == -1)
return false;
return true;
}
int min_cost_max_flow()
{
int minflow=0;
while(spfa(s,t))
{
int sum=INF,p=0;
for(int i=pre[t]; i+1; i=pre[edges[i^1].v])
{
sum=min(sum,edges[i].cap-edges[i].flow);
}
for(int i=pre[t]; i+1; i=pre[edges[i^1].v])
{
edges[i].flow+=sum;
edges[i^1].flow-=sum;
ans+=sum*edges[i].cost;
}
minflow+=sum;
}
return ans;
}
int main()
{
int cas=0;
while(scanf("%d%d",&n,&m)!=EOF)
{
cas++;
e=0;
ans=0;
memset(head,-1,sizeof(head));
memset(nnext,-1,sizeof(nnext));
s=0;
t=n+1;
for(int i=1; i<=m; i++)
{
scanf("%d%d%d%d",&a,&b,&c,&add);
addEdge(a,b,1,c);
addEdge(a,b,1,c+add);
}
addEdge(s,1,2,0);
addEdge(n,t,2,0);
printf("Case %d: %d\n",cas,min_cost_max_flow());
}
return 0;
}