STL中,stack对vector或者双端队列进行封装,提供stack操作的接口就是典型的适配器模式。
将一个类的接口转换成客户希望的另外一个接口,就是适配器模式。
使用适配器模式有以下优点:
降低了去实现一个功能点的难度,可以对现有的类进行包装,就可以进行使用了;
提高了项目质量,现有的类一般都是经过测试的,使用了适配器模式之后,不需要对旧的类进行全面的覆盖测试;
总的来说,提高了效率,降低了成本。
根据类的组合和继承,适配器模式分为对象适配器模式和类适配器模式。
既然有了类适配器和对象适配器,那么在实际中如何在二者之间做选择呢?
类适配器有以下特点:
由于Adapter直接继承自Adaptee类,所以,在Adapter类中可以对Adaptee类的方法进行重定义;
如果在Adaptee中添加了一个抽象方法,那么Adapter也要进行相应的改动,这样就带来高耦合;
如果Adaptee还有其它子类,而在Adapter中想调用Adaptee其它子类的方法时,使用类适配器是无法做到的。
对象适配器有以下特点:
有的时候,你会发现,不是很容易去构造一个Adaptee类型的对象;
当Adaptee中添加新的抽象方法时,Adapter类不需要做任何调整,也能正确的进行动作;
可以使用多态的方式在Adapter类中调用Adaptee类子类的方法。
由于对象适配器的耦合度比较低,所以在很多的书中都建议使用对象适配器。在我们实际项目中,也是如此,能使用对象组合的方式,就不使用多继承的方式。
类适配器的实现代码:
// Targets
class Target
{
public:
virtual void Request()
{
cout<<"Target::Request"<<endl;
}
};
// Adaptee
class Adaptee
{
public:
void SpecificRequest()
{
cout<<"Adaptee::SpecificRequest"<<endl;
}
};
// Adapter
class Adapter : public Target, Adaptee
{
public:
void Request()
{
Adaptee::SpecificRequest();
}
};
// Client
int main(int argc, char *argv[])
{
Target *targetObj = new Adapter();
targetObj->Request();
delete targetObj;
targetObj = NULL;
return 0;
}
对象适配器模式代码:
class Target
{
public:
Target(){}
virtual ~Target(){}
virtual void Request()
{
cout<<"Target::Request"<<endl;
}
};
class Adaptee
{
public:
void SpecificRequest()
{
cout<<"Adaptee::SpecificRequest"<<endl;
}
};
class Adapter : public Target
{
public:
Adapter() : m_Adaptee(new Adaptee) {}
~Adapter()
{
if (m_Adaptee != NULL)
{
delete m_Adaptee;
m_Adaptee = NULL;
}
}
void Request()
{
m_Adaptee->SpecificRequest();
}
private:
Adaptee *m_Adaptee;
};
int main(int argc, char *argv[])
{
Target *targetObj = new Adapter();
targetObj->Request();
delete targetObj;
targetObj = NULL;
return 0;
}