10个重要的算法C语言实现源代码

本文提供了多种经典数学算法的C/C++实现代码,包括拉格朗日插值、牛顿插值、高斯列主元消去法等,适用于离散数据拟合、线性方程组求解及数值积分等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

包括拉格朗日,牛顿插值,高斯,龙贝格,牛顿迭代,牛顿-科特斯,雅克比,秦九昭,幂法,高斯塞德尔 。都是经典的数学算法,希望能开托您的思路。转自kunli.info

1.拉格朗日插值多项式 ,用于离散数据的拟合

C/C++ code
    
#include < stdio.h > #include < conio.h > #include < alloc.h > float lagrange( float * x, float * y, float xx, int n) /* 拉格朗日插值算法 */ { int i,j; float * a,yy = 0.0 ; /* a作为临时变量,记录拉格朗日插值多项式 */ a = ( float * )malloc(n * sizeof ( float )); for (i = 0 ;i <= n - 1 ;i ++ ) { a[i] = y[i]; for (j = 0 ;j <= n - 1 ;j ++ ) if (j != i) a[i] *= (xx - x[j]) / (x[i] - x[j]); yy += a[i]; } free(a); return yy; } main() { int i,n; float x[ 20 ],y[ 20 ],xx,yy; printf( " Input n: " ); scanf( " %d " , & n); if (n >= 20 ) {printf( " Error!The value of n must in (0,20). " ); getch(); return 1 ;} if (n <= 0 ) {printf( " Error! The value of n must in (0,20). " ); getch(); return 1 ;} for (i = 0 ;i <= n - 1 ;i ++ ) { printf( " x[%d]: " ,i); scanf( " %f " , & x[i]); } printf( " \n " ); for (i = 0 ;i <= n - 1 ;i ++ ) { printf( " y[%d]: " ,i);scanf( " %f " , & y[i]);} printf( " \n " ); printf( " Input xx: " ); scanf( " %f " , & xx); yy = lagrange(x,y,xx,n); printf( " x=%f,y=%f\n " ,xx,yy); getch(); }

2.牛顿插值多项式,用于离散数据的拟合

C/C++ code
    
#include < stdio.h > #include < conio.h > #include < alloc.h > void difference( float * x, float * y, int n) { float * f; int k,i; f = ( float * )malloc(n * sizeof ( float )); for (k = 1 ;k <= n;k ++ ) { f[ 0 ] = y[k]; for (i = 0 ;i < k;i ++ ) f[i + 1 ] = (f[i] - y[i]) / (x[k] - x[i]); y[k] = f[k]; } return ; } main() { int i,n; float x[ 20 ],y[ 20 ],xx,yy; printf( " Input n: " ); scanf( " %d " , & n); if (n >= 20 ) {printf( " Error! The value of n must in (0,20). " ); getch(); return 1 ;} if (n <= 0 ) {printf( " Error! The value of n must in (0,20). " );getch(); return 1 ;} for (i = 0 ;i <= n - 1 ;i ++ ) { printf( " x[%d]: " ,i); scanf( " %f " , & x[i]); } printf( " \n " ); for (i = 0 ;i <= n - 1 ;i ++ ) { printf( " y[%d]: " ,i);scanf( " %f " , & y[i]);} printf( " \n " ); difference(x,( float * )y,n); printf( " Input xx: " ); scanf( " %f " , & xx); yy = y[ 20 ]; for (i = n - 1 ;i >= 0 ;i -- ) yy = yy * (xx - x[i]) + y[i]; printf( " NewtonInter(%f)=%f " ,xx,yy); getch(); }

3.高斯列主元消去法,求解其次线性方程组

C/C++ code
    
#include < stdio.h > #include < math.h > #define N 20 int main() { int n,i,j,k; int mi,tmp,mx; float a[N][N],b[N],x[N]; printf( " \nInput n: " ); scanf( " %d " , & n); if (n > N) { printf( " The input n should in(0,N)!\n " ); getch(); return 1 ; } if (n <= 0 ) { printf( " The input n should in(0,N)!\n " ); getch(); return 1 ; } printf( " Now input a(i,j),i,j=0...%d:\n " ,n - 1 ); for (i = 0 ;i < n;i ++ ) { for (j = 0 ;j < n;j ++ ) scanf( " %f " , & a[i][j]);} printf( " Now input b(i),i,j=0...%d:\n " ,n - 1 ); for (i = 0 ;i < n;i ++ ) scanf( " %f " , & b[i]); for (i = 0 ;i < n - 2 ;i ++ ) { for (j = i + 1 ,mi = i,mx = fabs(a[i][j]);j < n - 1 ;j ++ ) if (fabs(a[j][i]) > mx) { mi = j; mx = fabs(a[j][i]); } if (i < mi) { tmp = b[i];b[i] = b[mi];b[mi] = tmp; for (j = i;j < n;j ++ ) { tmp = a[i][j]; a[i][j] = a[mi][j]; a[mi][j] = tmp; } } for (j = i + 1 ;j < n;j ++ ) { tmp =- a[j][i] / a[i][i]; b[j] += b[i] * tmp; for (k = i;k < n;k ++ ) a[j][k] += a[i][k] * tmp; } } x[n - 1 ] = b[n - 1 ] / a[n - 1 ][n - 1 ]; for (i = n - 2 ;i >= 0 ;i -- ) { x[i] = b[i]; for (j = i + 1 ;j < n;j ++ ) x[i] -= a[i][j] * x[j]; x[i] /= a[i][i]; } for (i = 0 ;i < n;i ++ ) printf( " Answer:\n x[%d]=%f\n " ,i,x[i]); getch(); return 0 ; } #include < math.h > #include < stdio.h > #define NUMBER 20 #define Esc 0x1b #define Enter 0x0d float A[NUMBER][NUMBER + 1 ] ,ark; int flag,n; exchange( int r, int k); float max( int k); message(); main() { float x[NUMBER]; int r,k,i,j; char celect; clrscr(); printf( " \n\nUse Gauss. " ); printf( " \n\n1.Jie please press Enter. " ); printf( " \n\n2.Exit press Esc. " ); celect = getch(); if (celect == Esc) exit( 0 ); printf( " \n\n input n= " ); scanf( " %d " , & n); printf( " \n\nInput matrix A and B: " ); for (i = 1 ;i <= n;i ++ ) { printf( " \n\nInput a%d1--a%d%d and b%d: " ,i,i,n,i); for (j = 1 ;j <= n + 1 ;j ++ ) scanf( " %f " , & A[i][j]); } for (k = 1 ;k <= n - 1 ;k ++ ) { ark = max(k); if (ark == 0 ) { printf( " \n\nIt's wrong! " );message(); } else if (flag != k) exchange(flag,k); for (i = k + 1 ;i <= n;i ++ ) for (j = k + 1 ;j <= n + 1 ;j ++ ) A[i][j] = A[i][j] - A[k][j] * A[i][k] / A[k][k]; } x[n] = A[n][n + 1 ] / A[n][n]; for ( k = n - 1 ;k >= 1 ;k -- ) { float me = 0 ; for (j = k + 1 ;j <= n;j ++ ) { me = me + A[k][j] * x[j]; } x[k] = (A[k][n + 1 ] - me) / A[k][k]; } for (i = 1 ;i <= n;i ++ ) { printf( " \n\nx%d=%f " ,i,x[i]); } message(); } exchange( int r, int k) { int i; for (i = 1 ;i <= n + 1 ;i ++ ) A[ 0 ][i] = A[r][i]; for (i = 1 ;i <= n + 1 ;i ++ ) A[r][i] = A[k][i]; for (i = 1 ;i <= n + 1 ;i ++ ) A[k][i] = A[ 0 ][i]; } float max( int k) { int i; float temp = 0 ; for (i = k;i <= n;i ++ ) if (fabs(A[i][k]) > temp) { temp = fabs(A[i][k]); flag = i; } return temp; } message() { printf( " \n\n Go on Enter ,Exit press Esc! " ); switch (getch()) { case Enter: main(); case Esc: exit( 0 ); default :{printf( " \n\nInput error! " );message();} } }

4.龙贝格求积公式,求解定积分

C/C++ code
    
#include < stdio.h > #include < math.h > #define f(x) (sin(x)/x) #define N 20 #define MAX 20 #define a 2 #define b 4 #define e 0.00001 float LBG( float p, float q, int n) { int i; float sum = 0 ,h = (q - p) / n; for (i = 1 ;i < n;i ++ ) sum += f(p + i * h); sum += (f(p) + f(q)) / 2 ; return (h * sum); } void main() { int i; int n = N,m = 0 ; float T[MAX + 1 ][ 2 ]; T[ 0 ][ 1 ] = LBG(a,b,n); n *= 2 ; for (m = 1 ;m < MAX;m ++ ) { for (i = 0 ;i < m;i ++ ) T[i][ 0 ] = T[i][ 1 ]; T[ 0 ][ 1 ] = LBG(a,b,n); n *= 2 ; for (i = 1 ;i <= m;i ++ ) T[i][ 1 ] = T[i - 1 ][ 1 ] + (T[i - 1 ][ 1 ] - T[i - 1 ][ 0 ]) / (pow( 2 , 2 * m) - 1 ); if ((T[m - 1 ][ 1 ] < T[m][ 1 ] + e) && (T[m - 1 ][ 1 ] > T[m][ 1 ] - e)) { printf( " Answer=%f\n " ,T[m][ 1 ]); getch(); return ; } } }
C/C++ code
    
5 .牛顿迭代公式,求方程的近似解
C/C++ code
    
#include < stdio.h > #include < math.h > #include < conio.h > #define N 100 #define PS 1e-5 #define TA 1e-5 float Newton( float ( * f)( float ), float ( * f1)( float ), float x0 ) { float x1,d = 0 ; int k = 0 ; do { x1 = x0 - f(x0) / f1(x0); if ((k ++> N) || (fabs(f1(x1)) < PS)) { printf( " \nFailed! " ); getch(); exit(); } d = (fabs(x1) < 1 ? x1 - x0:(x1 - x0) / x1); x0 = x1; printf( " x(%d)=%f\n " ,k,x0); } while ((fabs(d)) > PS && fabs(f(x1)) > TA) ; return x1; } float f( float x) { return x * x * x + x * x - 3 * x - 3 ; } float f1( float x) { return 3.0 * x * x + 2 * x - 3 ; } void main() { float f( float ); float f1( float ); float x0,y0; printf( " Input x0: " ); scanf( " %f " , & x0); printf( " x(0)=%f\n " ,x0); y0 = Newton(f,f1,x0); printf( " \nThe root is x=%f\n " ,y0); getch(); }

6. 牛顿-科特斯求积公式,求定积分 C/C++ code
    
#include < stdio.h > #include < math.h > int NC(a,h,n,r,f) float ( * a)[]; float h; int n,f; float * r; { int nn,i; float ds; if (n > 1000 || n < 2 ) { if (f) printf( " \n Faild! Check if 1<n<1000!\n " ,n); return ( - 1 ); } if (n == 2 ) { * r = 0.5 * (( * a)[ 0 ] + ( * a)[ 1 ]) * (h); return ( 0 ); } if (n - 4 == 0 ) { * r = 0 ; * r =* r + 0.375 * (h) * (( * a)[n - 4 ] + 3 * ( * a)[n - 3 ] + 3 * ( * a)[n - 2 ] + ( * a)[n - 1 ]); return ( 0 ); } if (n / 2 - (n - 1 ) / 2 <= 0 ) nn = n; else nn = n - 3 ; ds = ( * a)[ 0 ] - ( * a)[nn - 1 ]; for (i = 2 ;i <= nn;i = i + 2 ) ds = ds + 4 * ( * a)[i - 1 ] + 2 * ( * a)[i]; * r = ds * (h) / 3 ; if (n > nn) * r =* r + 0.375 * (h) * (( * a)[n - 4 ] + 3 * ( * a)[n - 3 ] + 3 * ( * a)[n - 2 ] + ( * a)[n - 1 ]); return ( 0 ); } main() { float h,r; int n,ntf,f; int i; float a[ 16 ]; printf( " Input the x[i](16):\n " ); for (i = 0 ;i <= 15 ;i ++ ) scanf( " %d " , & a[i]); h = 0.2 ; f = 0 ; ntf = NC(a,h,n, & r,f); if (ntf == 0 ) printf( " \nR=%f\n " ,r); else printf( " \n Wrong!Return code=%d\n " ,ntf); getch(); }

7.雅克比迭代,求解方程近似解

C/C++ code
    
#include < stdio.h > #include < math.h > #define N 20 #define MAX 100 #define e 0.00001 int main() { int n; int i,j,k; float t; float a[N][N],b[N][N],c[N],g[N],x[N],h[N]; printf( " \nInput dim of n: " ); scanf( " %d " , & n); if (n > N) { printf( " Faild! Check if 0<n<N!\n " ); getch(); return 1 ; } if (n <= 0 ) {printf( " Faild! Check if 0<n<N!\n " ); getch(); return 1 ;} printf( " Input a[i,j],i,j=0…%d:\n " ,n - 1 ); for (i = 0 ;i < n;i ++ ) for (j = 0 ;j < n;j ++ ) scanf( " %f " , & a[i][j]); printf( " Input c[i],i=0…%d:\n " ,n - 1 ); for (i = 0 ;i < n;i ++ ) scanf( " %f " , & c[i]); for (i = 0 ;i < n;i ++ ) for (j = 0 ;j < n;j ++ ) { b[i][j] =- a[i][j] / a[i][i]; g[i] = c[i] / a[i][i]; } for (i = 0 ;i < MAX;i ++ ) { for (j = 0 ;j < n;j ++ ) h[j] = g[j]; { for (k = 0 ;k < n;k ++ ) { if (j == k) continue ; h[j] += b[j][k] * x[k]; } } t = 0 ; for (j = 0 ;j < n;j ++ ) if (t < fabs(h[j] - x[j])) t = fabs(h[j] - x[j]); for (j = 0 ;j < n;j ++ ) x[j] = h[j]; if (t < e) { printf( " x_i=\n " ); for (i = 0 ;i < n;i ++ ) printf( " x[%d]=%f\n " ,i,x[i]); getch(); return 0 ; } printf( " after %d repeat , return\n " ,MAX); getch(); return 1 ; } getch(); }

8.秦九昭算法

C/C++ code
    
#include < math.h > float qin( float a[], int n, float x) { float r = 0 ; int i; for (i = n;i >= 0 ;i -- ) r = r * x + a[i]; return r; } main() { float a[ 50 ],x,r = 0 ; int n,i; do { printf( " Input frequency: " ); scanf( " %d " , & n); } while (n < 1 ); printf( " Input value: " ); for (i = 0 ;i <= n;i ++ ) scanf( " %f " , & a[i]); printf( " Input frequency: " ); scanf( " %f " , & x); r = qin(a,n,x); printf( " Answer:%f " ,r); getch(); }

9.幂法

C/C++ code
    
#include < stdio.h > #include < math.h > #define N 100 #define e 0.00001 #define n 3 float x[n] = { 0 , 0 , 1 }; float a[n][n] = {{ 2 , 3 , 2 },{ 10 , 3 , 4 },{ 3 , 6 , 1 }}; float y[n]; main() { int i,j,k; float xm,oxm; oxm = 0 ; for (k = 0 ;k < N;k ++ ) { for (j = 0 ;j < n;j ++ ) { y[j] = 0 ; for (i = 0 ;i < n;i ++ ) y[j] += a[j][i] * x[i]; } xm = 0 ; for (j = 0 ;j < n;j ++ ) if (fabs(y[j]) > xm) xm = fabs(y[j]); for (j = 0 ;j < n;j ++ ) y[j] /= xm; for (j = 0 ;j < n;j ++ ) x[j] = y[j]; if (fabs(xm - oxm) < e) { printf( " max:%f\n\n " ,xm); printf( " v[i]:\n " ); for (k = 0 ;k < n;k ++ ) printf( " %f\n " ,y[k]); break ; } oxm = xm; } getch(); }

10.高斯塞德尔

C/C++ code
    
#include < math.h > #include < stdio.h > #define N 20 #define M 99 float a[N][N]; float b[N]; int main() { int i,j,k,n; float sum,no,d,s,x[N]; printf( " \nInput dim of n: " ); scanf( " %d " , & n); if (n > N) { printf( " Faild! Check if 0<n<N!\n " ); getch(); return 1 ; } if (n <= 0 ) { printf( " Faild! Check if 0<n<N!\n " );getch(); return 1 ;} printf( " Input a[i,j],i,j=0…%d:\n " ,n - 1 ); for (i = 0 ;i < n;i ++ ) for (j = 0 ;j < n;j ++ ) scanf( " %f " , & a[i][j]); printf( " Input b[i],i=0…%d:\n " ,n - 1 ); for (i = 0 ;i < n;i ++ ) scanf( " %f " , & b[i]); for (i = 0 ;i < n;i ++ ) x[i] = 0 ; k = 0 ; printf( " \nk=%dx= " ,k); for (i = 0 ;i < n;i ++ ) printf( " %12.8f " ,x[i]); do { k ++ ; if (k > M){printf( " \nError!\n”);getch();} break ; } no = 0.0 ; for (i = 0 ;i < n;i ++ ) { s = x[i]; sum = 0.0 ; for (j = 0 ;j < n;j ++ ) if (j != i) sum = sum + a[i][j] * x[j]; x[i] = (b[i] - sum) / a[i][i]; d = fabs(x[i] - s); if (no < d) no = d; } printf( " \nk=%2dx= " ,k); for (i = 0 ;i < n;i ++ ) printf( " %f " ,x[i]); } while (no >= 0.1e-6 ); if (no < 0.1e-6 ) { printf( " \n\n answer=\n " ); printf( " \nk=%d " ,k); for (i = 0 ;i < n;i ++ ) printf( " \n x[%d]=%12.8f " ,i,x[i]); } getch(); }
16进制10进制.txt 32.txt asm.txt Crctable.txt C标志符命名源程序.txt erre.txt erre2.txt ff.txt for循环的.txt list.log N皇后问题回溯算法.txt ping.txt re.txt source.txt winsock2.txt ww.txt 万年历.txt 万年历的算法 .txt 乘方函数桃子猴.txt 乘法矩阵.txt 二分查找1.txt 二分查找2.txt 二叉排序树.txt 二叉树.txt 二叉树实例.txt 二进制数.txt 二进制数2.txt 余弦曲线.txt 余弦直线.txt 傻瓜递归.txt 冒泡排序.txt 冒泡法改进.txt 动态计算网络最长最短路线.txt 十五人排序.txt 单循环链表.txt 单词倒转.txt 单链表.txt 单链表1.txt 单链表2.txt 单链表倒序.txt 单链表的处理全集.txt 双链表正排序.txt 反出字符.txt 叠代整除.txt 各种排序法.txt 哈夫曼算法.txt 哈慢树.txt 四分砝码.txt 四塔1.txt 四塔2.txt 回文.txt 图.txt 圆周率.txt 多位阶乘.txt 多位阶乘2.txt 大加数.txt 大小倍约.txt 大整数.txt 字符串查找.txt 字符编辑.txt 字符编辑技术(插入和删除) .txt 完数.txt 定长串.txt 实例1.txt 实例2.txt 实例3.txt 小写数字转换成大写数字1.txt 小写数字转换成大写数字2.txt 小写数字转换成大写数字3.txt 小字库DIY-.txt 小字库DIY.txt 小孩分糖果.txt 小明买书.txt 小白鼠钻迷宫.txt 带头结点双链循环线性表.txt 平方根.txt 建树和遍历.txt 建立链表1.txt 扫描码.txt 挽救软盘.txt 换位递归.txt 排序法.txt 推箱子.txt 数字移动.txt 数据结构.txt 数据结构2.txt 数据结构3.txt 数组完全单元.txt 数组操作.txt 数组递归退出.txt 数组递归退出2.txt 文件加密.txt 文件复制.txt 文件连接.txt 无向图.txt 时间陷阱.txt 杨辉三角形.txt 栈单元加.txt 栈操作.txt 桃子猴.txt 桶排序.txt 检出错误.txt 检测鼠标.txt 汉字字模.txt 汉诺塔.txt 汉诺塔2.txt 灯塔问题.txt 猴子和桃.txt 百鸡百钱.txt 矩阵乘法动态规划.txt 矩阵转换.txt 硬币分法.txt 神经元模型.txt 穷举搜索法.txt 符号图形.txt 简单数据库.txt 简单计算器.txt 简单逆阵.txt 线性顺序存储结构.txt 线索化二叉树.txt 绘制圆.txt 编随机数.txt 网络最短路径Dijkstra算法.txt 自我复制.txt 节点.txt 苹果分法.txt 螺旋数组1.txt 螺旋数组2.txt 试题.txt 诺汉塔画图版.txt 读写文本文件.txt 货郎担分枝限界图形演示.txt 货郎担限界算法.txt 质因子.txt 输出自已.txt 迷宫.txt 迷宫问题.txt 逆波兰计算器.txt 逆矩阵.txt 逆阵.txt 递堆法.txt 递归桃猴.txt 递归车厢.txt 递推.txt 逻辑移动.txt 链串.txt 链栈.txt 链表十五人排序.txt 链表(递归).txt 链队列.txt 队列.txt 阶乘递归.txt 阿姆斯特朗数.txt 非递归.txt 顺序栈.txt 顺序表.txt 顺序队列.txt 骑士遍历1.txt 骑士遍历2.txt 骑士遍历回逆.txt 黑白.txt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值