【题目1】
给定字符串 s 和 t ,判断 s 是否为 t 的子序列。字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"abcde"的一个子序列,而"aec"不是)。输入:s = "abc", t = "ahbgdc" 输出:true
-
dp[i][j] 表示以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,t匹配s的子序列的最大长度
-
if (s[i - 1] == t[j - 1]),那么dp[i][j] = dp[i - 1][j - 1] + 1;,因为找到了一个相同的字符,相同子序列长度自然要在dp[i-1][j-1]的基础上加1 if (s[i - 1] != t[j - 1]),此时相当于t要删除元素,t如果把当前元素t[j - 1]删除,那么dp[i][j] 的数值就是 看s[i - 1]与 t[j - 2]的比较结果了,即:dp[i][j] = dp[i][j - 1];
-
从递推公式可以看出dp[i][j]都是依赖于dp[i - 1][j - 1] 和 dp[i][j - 1],所以dp[0][0]和dp[i][0]是一定要初始化的。


class Solution {
public boolean isSubsequence(String s, String t) {
int length1 = s.length(); int length2 = t.length();
int[][] dp = new int[length1+1][length2+1];
for(int i = 1; i <= length1; i++){
for(int j = 1; j <= length2; j++){
if(s.charAt(i-1) == t.charAt(j-1)){
dp[i][j] = dp[i-1][j-1] + 1;
}else{
dp[i][j] = dp[i][j-1];
}
}
}
if(dp[length1][length2] == length1){
return true;
}else{
return false;
}
}
}
【题目2】
给定一个字符串 s 和一个字符串 t ,计算在 s 的子序列中 t 出现的个数。字符串的一个 子序列 是指,通过删除一些(也可以不删除)字符且不干扰剩余字符相对位置所组成的新字符串。(例如,"ACE" 是 "ABCDE" 的一个子序列,而 "AEC" 不是)
输入:s = "rabbbit", t = "rabbit" 输出:3
【题目3】
给定两个单词 word1 和 word2 ,返回使得 word1 和 word2 相同所需的最小步数。每步 可以删除任意一个字符串中的一个字符。
输入: word1 = "sea", word2 = "eat 输出: 2
解释: 第一步将 "sea" 变为 "ea" ,第二步将 "eat "变为 "ea"
-
dp[i][j]:以i-1为结尾的字符串word1,和以j-1位结尾的字符串word2,想要达到相等,所需要删除元素的最少次数。
-
当word1[i - 1] 与 word2[j - 1]相同的时候。当word1[i - 1] 与 word2[j - 1]不相同的时候。当word1[i - 1] 与 word2[j - 1]相同的时候,dp[i][j] = dp[i - 1][j - 1];。当word1[i - 1] 与 word2[j - 1]不相同的时候,有三种情况:情况一:删word1[i - 1],最少操作次数为dp[i - 1][j] + 1。情况二:删word2[j - 1],最少操作次数为dp[i][j - 1] + 1。情况三:同时删word1[i - 1]和word2[j - 1],操作的最少次数为dp[i - 1][j - 1] + 2
-
从递推公式中,可以看出来,dp[i][0] 和 dp[0][j]是一定要初始化的。dp[i][0]:word2为空字符串,以i-1为结尾的字符串word1要删除多少个元素,才能和word2相同呢,很明显dp[i][0] = i。
class Solution {
public int minDistance(String word1, String word2) {
int[][] dp = new int[word1.length() + 1][word2.length() + 1];
for (int i = 0; i < word1.length() + 1; i++) dp[i][0] = i;
for (int j = 0; j < word2.length() + 1; j++) dp[0][j] = j;
for (int i = 1; i < word1.length() + 1; i++) {
for (int j = 1; j < word2.length() + 1; j++) {
if (word1.charAt(i - 1) == word2.charAt(j - 1)) {
dp[i][j] = dp[i - 1][j - 1];
}else{
dp[i][j] = Math.min(dp[i - 1][j - 1] + 2,
Math.min(dp[i - 1][j] + 1, dp[i][j - 1] + 1));
}
}
}
return dp[word1.length()][word2.length()];
}
}
【题目4】编辑距离
给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。你可以对一个单词进行如下三种操作:插入一个字符删除一个字符替换一个字符
【题目5】
给你一个字符串 s ,请你统计并返回这个字符串中 回文子串 的数目。回文字符串 是正着读和倒过来读一样的字符串。子字符串 是字符串中的由连续字符组成的一个序列。具有不同开始位置或结束位置的子串,即使是由相同的字符组成,也会被视作不同的子串。
输入:s = "abc" 输出:3
解释:三个回文子串: "a", "b", "c"
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
-
情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
-
情况二:下标i 与 j相差为1,例如aa,也是回文子串
-
情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
dp[i][j]初始化为false。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。dp[i + 1][j - 1] 在 dp[i][j]的左下角

class Solution {
public int countSubstrings(String s) {
int len, ans = 0;
if (s == null || (len = s.length()) < 1) return 0;
//dp[i][j]:s字符串下标i到下标j的字串是否是一个回文串,即s[i, j]
boolean[][] dp = new boolean[len][len];
for (int j = 0; j < len; j++) {
for (int i = 0; i <= j; i++) {
//当两端字母一样时,才可以两端收缩进一步判断
if (s.charAt(i) == s.charAt(j)) {
//i++,j--,即两端收缩之后i,j指针指向同一个字符或者i超过j了,必然是一个回文串
if (j - i < 3) {
dp[i][j] = true;
} else {
//否则通过收缩之后的字串判断
dp[i][j] = dp[i + 1][j - 1];
}
} else {//两端字符不一样,不是回文串
dp[i][j] = false;
}
}
}
//遍历每一个字串,统计回文串个数
for (int i = 0; i < len; i++) {
for (int j = 0; j < len; j++) {
if (dp[i][j]) ans++;
}
}
return ans;
}
}
【题目6】
给你一个字符串 s ,找出其中最长的回文子序列,并返回该序列的长度。子序列定义为:不改变剩余字符顺序的情况下,删除某些字符或者不删除任何字符形成的一个序列。
输入:s = "bbbab" 输出:4
解释:一个可能的最长回文子序列为 "bbbb" 。
-
dp[i][j]:字符串s在[i, j]范围内最长的回文子序列的长度为dp[i][j]。
-
如果s[i]与s[j]相同,那么dp[i][j] = dp[i + 1][j - 1] + 2;如果s[i]与s[j]不相同,说明s[i]和s[j]的同时加入 并不能增加[i,j]区间回文子串的长度,那么分别加入s[i]、s[j]看看哪一个可以组成最长的回文子序列。加入s[j]的回文子序列长度为dp[i + 1][j]。加入s[i]的回文子序列长度为dp[i][j - 1]。那么dp[i][j]一定是取最大的,即:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]);
-
首先要考虑当i 和j 相同的情况,从递推公式:dp[i][j] = dp[i + 1][j - 1] + 2; 可以看出 递推公式是计算不到 i 和j相同时候的情况。所以需要手动初始化一下,当i与j相同,那么dp[i][j]一定是等于1的,即:一个字符的回文子序列长度就是1。其他情况dp[i][j]初始为0就行,这样递推公式:dp[i][j] = max(dp[i + 1][j], dp[i][j - 1]); 中dp[i][j]才不会被初始值覆盖。
-
也就是从矩阵的角度来说,dp[i][j] 下一行的数据。 所以遍历i的时候一定要从下到上遍历,这样才能保证,下一行的数据是经过计算的。

public class Solution {
public int longestPalindromeSubseq(String s) {
int len = s.length();
int[][] dp = new int[len + 1][len + 1];
for (int i = len - 1; i >= 0; i--) { // 从后往前遍历 保证情况不漏
dp[i][i] = 1; // 初始化
for (int j = i + 1; j < len; j++) {
if (s.charAt(i) == s.charAt(j)) {
dp[i][j] = dp[i + 1][j - 1] + 2;
} else {
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j - 1]);
}
}
}
return dp[0][len - 1];
}
}