scikit包遇到的问题。

本文介绍了如何选择与AdaboostClassifier兼容的基础分类器。通过一段Python代码演示了哪些分类器支持sample_weight参数,这对于使用Adaboost进行加权样本训练至关重要。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

因为需要调用scikit包中Adaboost算法,我们需要设定一个基础分类器,因为开始不知道随便设定一些分类器,出现错误信息:

TypeError: fit() got an unexpected keyword argument 'sample_weight' 然后网上搜到有人问到这个问题如下:

I am trying to use AdaBoostClassifier with a base learner other than DecisionTree. I have tried SVM and KNeighborsClassifier but I get errors. Can some one point out the classifiers that can be used with AdaBoostClassifier? 

Ok, we have a systematic method to find out all the base learners supported by AdaBoostClassifier. Compatible base learner's fit method needs to support sample_weight, which can be obtained by running following code:

import inspect
from sklearn.utils.testing import all_estimators
for name, clf in all_estimators(type_filter='classifier'):
    if 'sample_weight' in inspect.getargspec(clf().fit)[0]:
       print name

This results in following output: AdaBoostClassifier, BernoulliNB, DecisionTreeClassifier, ExtraTreeClassifier, ExtraTreesClassifier, MultinomialNB, NuSVC, Perceptron, RandomForestClassifier, RidgeClassifierCV, SGDClassifier, SVC.

运行结果如图:


If the classifier doesn't implement predict_proba, you will have to set AdaBoostClassifier parameter algorithm = 'SAMME'.

原始链接: http://stackoverflow.com/questions/18306416/adaboostclassifier-with-different-base-learners
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值