Pascal's Triangle:
Given numRows, generate the first numRows of Pascal's triangle.
For example, given numRows = 5,
Return
[ [1], [1,1], [1,2,1], [1,3,3,1], [1,4,6,4,1] ]
Pascal's Triangle||:
Given an index k, return the kth row of the Pascal's triangle.
For example, given k = 3,
Return [1,3,3,1]
.
Note:
Could you optimize your algorithm to use only O(k) extra space?
Pascal's triangle.
public class Solution {
public List<List<Integer>> generate(int numRows) {
if(numRows == 0){
return new ArrayList<List<Integer>>();
}
List<List<Integer>> ans = new ArrayList<List<Integer>>();
ans.add(new ArrayList<Integer>(Arrays.asList(1)));
for(int i=1;i<numRows;i++){
List<Integer> list = new ArrayList<Integer>();
for(int j=0;j<=i;j++){
if(j==0||j==i){
list.add(1);
continue;
}
list.add(ans.get(i-1).get(j-1)+ans.get(i-1).get(j));
}
ans.add(list);
}
return ans;
}
}
Pascal's Triangle||:
public class Solution {
public List<Integer> getRow(int rowIndex) {
List<Integer> ans = new ArrayList<Integer>();
for(int i=0;i<=rowIndex;i++){
List<Integer> temp = new ArrayList<Integer>();
for(int j=0;j<=i;j++){
if(j==0||j==i){
temp.add(1);
continue;
}
temp.add(ans.get(j)+ans.get(j-1));
}
ans = new ArrayList<Integer>(temp);
}
return ans;
}
}
其实这些基本处理就是学习C语言时的杨辉三角。