Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 21366 | Accepted: 9876 |
Description
Each vase has a distinct characteristic (just like flowers do). Hence, putting a bunch of flowers in a vase results in a certain aesthetic value, expressed by an integer. The aesthetic values are presented in a table as shown below. Leaving a vase empty has an aesthetic value of 0.
V A S E S | ||||||
1 | 2 | 3 | 4 | 5 | ||
Bunches | 1 (azaleas) | 7 | 23 | -5 | -24 | 16 |
2 (begonias) | 5 | 21 | -4 | 10 | 23 | |
3 (carnations) | -21 | 5 | -4 | -20 | 20 |
According to the table, azaleas, for example, would look great in vase 2, but they would look awful in vase 4.
To achieve the most pleasant effect you have to maximize the sum of aesthetic values for the arrangement while keeping the required ordering of the flowers. If more than one arrangement has the maximal sum value, any one of them will be acceptable. You have to produce exactly one arrangement.
Input
- The first line contains two numbers: F, V.
- The following F lines: Each of these lines contains V integers, so that Aij is given as the jth number on the (i+1)st line of the input file.
- 1 <= F <= 100 where F is the number of the bunches of flowers. The bunches are numbered 1 through F.
- F <= V <= 100 where V is the number of vases.
- -50 <= Aij <= 50 where Aij is the aesthetic value obtained by putting the flower bunch i into the vase j.
Output
Sample Input
3 5 7 23 -5 -24 16 5 21 -4 10 23 -21 5 -4 -20 20
Sample Output
53
Source
原题链接:http://poj.org/problem?id=1157
题意:给出f朵花,v个花瓶,要把花都插到花瓶里去,而且花的顺序不能改变,编号小的在左边,每朵花放到花瓶里都会有一定的价值,问如何放才能产生最大的价值
我们设dp[i][j]表示处理到第i朵花,然后把第i朵花放到第j个花瓶里时所能获得的最大价值;
显然 dp[i][j] = max(dp[i - 1][k]) + val[i][j],其中k< j val[i][j]表示把第i朵花放到第j个花瓶里产生的价值
本题dp状态:
i=0 | i=1 | i=2 | i=3 | i=4 | i=5 | |
j=0 | 0 | 0 | 0 | 0 | 0 | 0 |
j=1 | 0 | 7 | 23 | -5 | -24 | 16 |
j=2 | 0 | -INF | 28 | 19 | 33 | 46 |
j=3 | 0 | -INF | -INF | -INF | 24 | 8 |
AC代码:
/**
* 行有余力,则来刷题!
* 博客链接:http://blog.youkuaiyun.com/hurmishine
*
*/
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int maxn=100+5;
const int INF=0x3f3f3f3f;
int a[maxn][maxn];
int dp[maxn][maxn];
int n,m;
int main()
{
//freopen("C:\\Documents and Settings\\Administrator\\桌面\\data.txt","r",stdin);
while(cin>>n>>m)
{
//memset(dp,-INF,sizeof(dp));
for(int i=1; i<=n; i++)
{
for(int j=1; j<=m; j++)
cin>>a[i][j],dp[i][j]=-INF;
}
for(int i=0; i<=m; i++)
dp[0][i]=0;
dp[1][1]=a[1][1];
for(int i=1; i<=n; i++)
{
for(int j=i; j<=m; j++)//j从i开始,小优化
{
for(int k=1; k<j; k++)
{
dp[i][j]=max(dp[i][j],dp[i-1][k]+a[i][j]);
}
}
}
int ans=-INF;
/**
for(int i=0;i<=n;i++)
{
for(int j=0;j<=m;j++)
cout<<dp[i][j]<<"\t";
cout<<endl;
}
*/
for(int i=1; i<=m; i++)
{
ans=max(ans,dp[n][i]);
}
cout<<ans<<endl;
}
return 0;
}
参考博客: http://blog.youkuaiyun.com/z309241990/article/details/9268679
http://blog.youkuaiyun.com/guard_mine/article/details/40892949
http://blog.youkuaiyun.com/wangjian8006/article/details/8964060
http://blog.youkuaiyun.com/r1986799047/article/details/48506687