HDU 1845 Jimmy’s Assignment【二分匹配,三正则图】

本文探讨了在特定类型的三正则图中寻找最大匹配的问题。这类图具有每个顶点度为3且2边连通的特点,通过分析图的性质,得出了一种高效的算法解决方案,并提供了两种AC代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Jimmy’s Assignment

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 1525    Accepted Submission(s): 661


Problem Description
Jimmy is studying Advanced Graph Algorithms at his university. His most recent assignment is to find a maximum matching in a special kind of graph. This graph is undirected, has N vertices and each vertex has degree 3. Furthermore, the graph is 2-edge-connected (that is, at least 2 edges need to be removed in order to make the graph disconnected). A matching is a subset of the graph’s edges, such that no two edges in the subset have a common vertex. A maximum matching is a matching having the maximum cardinality.
  Given a series of instances of the special graph mentioned above, find the cardinality of a maximum matching for each instance.
 

Input
The first line of input contains an integer number T, representing the number of graph descriptions to follow. Each description contains on the first line an even integer number N (4<=N<=5000), representing the number of vertices. Each of the next 3*N/2 lines contains two integers A and B, separated by one blank, denoting that there is an edge between vertex A and vertex B. The vertices are numbered from 1 to N. No edge may appear twice in the input.
 

Output
For each of the T graphs, in the order given in the input, print one line containing the cardinality of a maximum matching.
 

Sample Input
  
2 4 1 2 1 3 1 4 2 3 2 4 3 4 4 1 2 1 3 1 4 2 3 2 4 3 4
 

Sample Output
  
2 2
 

Author
Mugurel Ionut Andreica
 

Source

原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1845

邝斌说是水题!!!

AC代码1:

#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
const int maxn=5000+5;
int n;
int link[maxn];
bool vis[maxn];
vector<int>a[maxn];
bool Find(int x)
{
    for(int i=0;i<a[x].size();i++)
    {
        int v=a[x][i];
        if(!vis[v])
        {
            vis[v]=true;
            if(link[v]==-1||Find(link[v]))
            {
                link[v]=x;
                return true;
            }
        }
    }
    return false;
}
int Hungery()
{
    int ans=0;
    memset(link,-1,sizeof(link));
    for(int i=1;i<=n;i++)
    {
        memset(vis,false,sizeof(vis));
        if(Find(i))
            ans++;
    }
    return ans;
}
int main()
{
    int T;
    cin>>T;
    while(T--)
    {
        cin>>n;
        for(int i=1;i<=n;i++)
            a[i].clear();
        int m=3*n/2;
        int x,y;
        while(m--)
        {
            scanf("%d%d",&x,&y);
            a[x].push_back(y);
            a[y].push_back(x);
        }
        cout<<Hungery()/2<<endl;
    }
    return 0;
}

以下转自:http://blog.sina.com.cn/s/blog_677a3eb30100llyn.html

给一n个点的三正则图,求最大匹配。
根据握手定理,n一定是偶数。
由于三正则图,而且题目提示是2边连通,所以图中不存在桥,也就是一定可以找到一条回路经过每个顶点至少一次(强连通的定义:强连通图一定存在一条回路记过每个顶点至少一次)由于是三则图,每个顶点的度是3,如果这条回路经过某个顶点2次,那么这个顶点的度就是4,这个和条件矛盾。
这条经过每个顶点一次的交错路就可以作出n/2匹配

AC代码2:

#include<stdio.h>
int main(){
    int T,x,y,n,i;
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        for(i=1; i<=n*3/2; i++)scanf("%d%d",&x,&y);
        printf("%d\n",n/2);
    }
    return 0;
}


尊重原创,转载请注明出处:http://blog.csdn.net/hurmishine


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值