对上一篇博客中代码略做修改,在训练完成之后进行模型导出操作
# y = x^2 + 1
import tensorflow as tf
import numpy as np
import random
def get_batch(size=128):
xs = []
ys = []
for i in range(size):
x = random.random() * 2
y = x * x + 1
xs.append(x)
ys.append(y)
return np.array(xs), np.array(ys)
X = tf.placeholder(tf.float32, [None,1], name='input')
Y = tf.placeholder(tf.float32, [None,1])
def my_dnn():
x = tf.reshape(X, shape=[-1, 1])
w1 = tf.Variable(tf.random_normal(shape=[1,256], mean=0.0,
stddev=1))
b1 = tf.Variable(tf.random_normal([256]))
out1 = tf.nn.bias_add(tf.matmul(x,w1),b1)
out1 = tf.nn.relu(out1)
w2= tf.Variable(tf.random_normal(shape=[256,256]))
b2 = tf.Variable(tf.random_normal([256]))
out2= tf.nn.bias_add(tf.matmul(out1, w2),b2)
out2 = tf.nn.relu(out2)
w3 = tf.Variable(tf.random_normal(shape=[256, 256]))
b3 = tf.Variable(tf.random_normal([256]))
out3 = tf.nn.bias_add(tf.matmul(out2, w3),b3)
out3 = tf.nn.relu(out3)
w4 = tf.Variable(tf.random_normal(shape=[256, 1]))
b4 = tf.Variable(tf.random_normal([1]))
out4 = tf.nn.bias_add(tf.matmul(out3, w4), b4, name='output')
return out4
def train():
out = my_dnn()
loss = tf.reduce_mean(tf.square(Y - out))
optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
saver = tf.train.Saver()
with tf.Session() as sess:
sess.run(tf.initialize_all_variables())
step = 0
while True:
batch_x, batch_y = get_batch(64)
batch_x = batch_x.reshape([-1, 1])
batch_y = batch_y.reshape([-1, 1])
_, loss_ = sess.run([optimizer, loss], feed_dict={X:batch_x, Y:batch_y})
print(loss_)
if loss_ < 0.0001:
saver.save(sess, "./1.model", global_step=step)
break
step += 1
# train()
def eval():
out = my_dnn()
saver = tf.train.Saver()
with tf.Session() as sess:
saver.restore(sess, tf.train.latest_checkpoint('.'))
for i in range(100):
x = random.random() * 2
x = np.array([x]).reshape([-1,1])
y = sess.run(out, feed_dict={X:x})
print("x=%.5f 正确的y=%.5f 预测的 y=%.5f" % (x, x*x + 1, y))
def exportModel():
out = my_dnn()
saver = tf.train.Saver()
with tf.Session() as sess:
# 恢复模型参数
saver.restore(sess, tf.train.latest_checkpoint('.'))
from tensorflow.python.framework.graph_util import convert_variables_to_constants
output_graph_def = convert_variables_to_constants(sess, sess.graph_def, output_node_names=['output'])
with tf.gfile.FastGFile('1.pb', mode='wb') as f:
f.write(output_graph_def.SerializeToString())
if __name__ == '__main__':
# 训练
# train()
# 评估
# eval()
# 导出模型
exportModel()
新建一个Android项目
导入tensorflow-mobile的库
可以选择导在线的库,在这里导入离线的库
https://jcenter.bintray.com/org/tensorflow/tensorflow-android/
我添加1.6.0版本的,修改了gradle文件,完成了添加
需要注意:
compile(name: ‘tensorflow-android-1.6.0-rc0’, ext: ‘aar’)
“name: “:后要有空格
“ext: ” :后要有空格
添加模型文件
编写tensorflow mobile API的封装
最后在Activity调就可以了
给出完整项目的GitHub链接:
https://github.com/imu-hupeng/TensorflowTestApp