以我之前做出来的验证码图片生成的数据为例,其中源码在这一篇文章中《爬虫进阶:验证码突破–6、机器学习识别简单图片字母验证码》有过涉及,这里不再赘述
本篇文章主要通过对sklearn中的几个模型的对之前处理的带标识的验证码字符数据进行学习后,然后再测试样本数据
需要用到的python包:PIL(pillow),sklearn,os
#coding:utf-8
from PIL import Image
import os
from sklearn.externals import joblib
from sklearn.model_selection import train_test_split
train_data_path = "D:/CapCha/outdir"
读取训练集文件夹下的单字母/数字图像文件
def read_train_data(train_data_path):
"""
读取训练集文件夹下的单字母/数字图像文件
:return:image_array, image_label:图像list、图像label list """
files = os.listdir(train_data_path)
image_array = []
image_label = []
for capt_per_char_file in files:
image_label += list(capt_per_char_file.split("_")[0])
for capt_per_char_file in files:
path = os.path.join(train_data_path, capt_per_char_file)
image = Image.open(path)
image_array.append(image)
#print(capt_per_char_file + " 读取成功")
return image_array, image_label
生成特征矩阵
def feature_transfer(image):
"""
生成特征矩阵
计算每副图像的行和、列和,共image_width + image_height个特征
:param image:图像list
:return:
"""
image_width, image_height=(30,30)
image = image.resize((image_width, image_height)) #标准化图像格式
feature = []#计算特征
for x in range(image_width):#计算行特征
feature_width = 0
for y in range(image_height):
if image.get