【并查集】最小生成树II

题目:

农民约翰被选为他们镇的镇长!他其中一个竞选承诺就是在镇上建立起互联网,并连接到所有的农场。当然,他需要你的帮助。约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场。为了用最小的消费,他想铺设最短的光纤去连接所有的农场。你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并所用光纤最短的方案。每两个农场间的距离不会超过100000


输入:

第一行: 农场的个数,N(3<=N<=5000)。
第二行…结尾: 后来的行包含了一个N*N的矩阵,表示每个农场之间的距离。理论上,他们是N行,每行由N个用空格分隔的数组成,实际上,他们限制在80个字符,因此,某些行会紧接着另一些行。当然,对角线将会是0,因为不会有线路从第i个农场到它本身。


输出:

只有一个输出,其中包含连接到每个农场的光纤的最小长度。


样例输入:

4
0 4 9 21
4 0 8 17
9 8 0 16
21 17 16 0

样例输出:

28

思路:

先看数据,n<5000,然后别的算法应该过不了,所以我们用并查集来做,然后再来读题目,发现貌似和最优布线问题除了数据是一样的。


代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
int f[1000],n,t,ans,x;
struct node
{
	int w,p,s;
}a[100001];
int find(int dep)
{
	if(f[dep]==dep)return dep;
	else return f[dep]=find(f[dep]);
}
bool pc(node x,node y)
{
	return x.s<y.s;
}
void hb(int x,int y)
{
	int xx=find(x); 
	int yy=find(y);
	if (xx<yy) f[xx]=f[yy];
	else f[yy]=f[xx];
}
int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
	f[i]=i;
	for(int i=1;i<=n;i++)
	for(int j=1;j<=n;j++)
	{
		scanf("%d",&x);
		if(x!=0){a[++t]=(node){i,j,x};}
	}
	int bian=0;
	sort(a+1,a+t+1,pc);
	for(int i=1;i<=t;i++)
		if(find(a[i].w)!=find(a[i].p))
		{
			hb(a[i].w,a[i].p);
			ans+=a[i].s;
			bian++;
		
	if(bian==n-1)
	break;
		}
	printf("%d",ans);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值