A problem in an exam

昨日参加了北京大学的硕士入学考试,遇到了一道令人兴奋但难以解决的问题:证明两个级数等式之间的关系。该问题的核心在于如何处理左边分数中的n次幂,并将其转化为积分形式。这是一个对数学技能的极大挑战。

Yesterday I took part in the Masters Entrance Exam of Peking University. It was really inspiring! Here is a problem that I understand, have tried true, but do not know how to solve: Prove that ∑k=0m(−1)k(mk)1k+n+1=∑k=0n(−1)k(nk)1k+m+1,\sum_{k=0}^m(-1)^k{m\choose k}\frac{1}{k+n+1}=\sum_{k=0}^n(-1)^k{n\choose k}\frac{1}{k+m+1},k=0m(1)k(km)k+n+11=k=0n(1)k(kn)k+m+11, where mmm and nnn are positive integers.

Hint: The difficult part is to get rid of the nnn in the denominator on the left. Turn the fraction into an integral.

Challenge: Can you find a closed-form solution?

评论 1
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值