题目描述
Given an unsorted array of integers, find the length of longest increasing subsequence.
For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.
解题思路
该题使用DP思想,可以将第k个元素的递增序列长度动态算出。当第k个元素的值大于前k中任意一个元素时,将前k中元素的递增序列长度+1,并取最长的一个长度保存至length[k]中作为当前包含第k个元素的最长递增序列长度。该思想的时间复杂度为O(n2)
class Solution {
public:
int lengthOfLIS(vector<int>& nums) {
if (nums.empty()) return 0;
int m = 0, length[nums.size()];
memset(length, 0, sizeof(length));
for (int i = 0; i < nums.size(); i++) {
int temp = 1;
for (int j = 0; j < i; j++) {
if (nums[i] > nums[j])
temp = max(length[j] + 1, temp);
}
length[i] = temp;
m = max(m, length[i]);
}
return m;
}
};