JAVA图像细化:Hilditch细化算法

本文详细介绍了Hilditch细化算法的步骤和条件,包括像素的8连通联结数计算,以及在Java中如何实现这个算法。通过检查6个条件来迭代图像中的每个像素,以达到细化效果。算法涉及对3×3邻域的分析,确保在细化过程中保持图像结构的稳定。
                                                          JAVA图像细化:Hilditch细化算法

理论:

Hilditch 细化算法的步骤为:

Hilditch 细化算法是经典的二值图像细化算法,然而,在网上却很难找到一个详细、正确的介绍和实现。可以找到一辆个 Hilditch 算法的C实现,但缺乏注释,代码可读性也很差。在期刊网上找到几篇论文,提及了Hilditch 算法,结果一篇说的罗哩罗嗦根本看不懂,另一篇说的说的易懂,却是错误的!拿来主义是行不通了,于是只好结合着这几个论文和代码,从头写 Hilditch 细化算法。

假设像素p的3×3邻域结构为:

image

Hilditch 细化算法的步骤为:

对图像从左向右从上向下迭代每个像素,是为一个迭代周期。在每个迭代周期中,对于每一个像素p,如果它同时满足6个条件,则标记它。在当前迭代周期结束时,则把所有标记的像素的值设为背景值。如果某次迭代周期中不存在标记点(即满足6个条件的像素),则算法结束。假设背景值为0,前景值为1,则:

6个条件为:

(I):p 为1,即p不是背景;

(2):x1,x3,x5,x7不全部为1(否则把p标记删除,图像空心了);

(3):x1~x8 中,至少有2个为1(若只有1个为1,则是线段的端点。若没有为1的,则为孤立点);

(4):p的8连通联结数为1;

联结数指在像素p的3*3邻域中,和p连接的图形分量的个数:

image

上图中,左图的4连通联结数是2,8连通联结数是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值