caffe下一些参数的设置

本文探讨了weight_decay在防止过拟合中的作用及设置建议,并提供了在不同情况下偏置与参数的学习率和权重衰减项的具体配置方法。此外,还介绍了在Caffe框架中训练过程中的loss变化所反映的不同训练状态及其含义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

weight_decay防止过拟合的参数,使用方式:
1 样本越多,该值越小
2 模型参数越多,该值越大
一般建议值:
weight_decay: 0.0005

lr_mult,decay_mult
关于偏置与参数使用不同的学习率与权重衰减项:
1 偏置的学习率一般为参数的两倍
比如一个卷积,有偏置的话,其学习率应该是
  param { lr_mult: 1 }

  param { lr_mult: 2 } 

偏置设为2倍,能够加速收敛

对于偏置,其衰减项一般设置为0,还是对应上面的卷积:
  param { lr_mult: 1
          decay_mult:1 }
  param { lr_mult: 2 
          decay_mult:0} 

caffe 下与loss相关的一些说明:
1 train loss 不断下降,test loss 不断下降,说明网络正在学习
2 train loss 不断下降,test loss 趋于不变,说明网络过拟合
3 train loss 趋于不变,test loss 趋于不变,说明学习遇到瓶颈,需要减小学习率或者批处理大小
4 train loss 趋于不变,test loss 不断下降,说明数据集100%有问题
5 train loss 不断上升,test loss 不断上升(最终变为NaN),可能是网络结构设计不当,训练超参数设置不当,程序bug等某个问题引起
6 train loss 不断上下跳动,可能引起的原因:学习率过大,或者批处理大小太小

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值