设计模式——装饰模式

这个模式理解起来有些难度,本人也是通过看书、上网查资料,才了解了一些,下面来讲解一些其中的道理吧!

装饰模式是什么?

定义:动态的将责任附加到对象上。若要扩展功能,装饰者提供了比继承更有弹性的替代方案。

白话说:动态的扩展对象的功能

UML图如下:
在这里插入图片描述
角色扮演:
1、抽象构件(Component):给出一个抽象接口,以规范准备接收附加责任的对象
2、具体构件(Concrete Component):定义一个将要接收附加责任的类
3、装饰(Decorator):持有一个构件(Component)对象的实例,并定义一个与抽象构件接口一致的接口
4、具体装饰(Concrete Decorator):负责给构件对象“贴上”附加的责任

有时候我们会发现有些情况我们抽象不出以上几种角色,这个时候我们需要进行一些改动:
1、如果只有一个ConcreteComponent类而没有抽象的Component类,那么Decorator类可以是ConcreteComponent的一个子类。
2、如果只有一个ConcreteDecortor类,那么就没有必要建立一个单独的Decorator类,而可以把Decorator和ConcreteDecorator的责任合并成一个类

说了这么多,我们也许还会有些蒙圈,现在就让我们用实在的例子去理解吧!
先看一下小菜穿衣服的例子
UML结构图如下:
在这里插入图片描述
解说:这里人相当于具体构件(ConcreteComponent),服饰相当于装饰角色(Decorator),下面那些衣服相当于具体的服饰,这个例子中没有抽象构件!

代码如下:
Person类,相当于ConcreteComponent

class Person
    {
        public Person()
        {}
        private string name;
        public Person(string name)
        {
            this.name = name;
        }
        public virtual void show()
        {
            Console.WriteLine("装扮的{0}", name);
        }
    }

服装类(Decorator)

 class Finery : Person
    {
        protected Person component;
        //打扮
        public void Decorate(Person component)
        {
            this.component = component;
        }
        public override void show()
        {
            if (component != null)
            {
                component.show();
            }

        }
    }

具体服饰类

class TShirts : Finery
    {
        public override void show()
        {
            Console.Write("大T恤!");
            base.show();
        }

    }
    class BigTrouser : Finery
    {
        public override void show()
        {
            Console.Write("垮裤!");
            base.show();
        }

    }
    class Sneakers : Finery
    {
        public override void show()
        {
            Console.Write("破球鞋");
            base.show();
        }

    }
    class LeatherShoes : Finery
    {
        public override void show()
        {
            Console.Write("皮鞋");
            base.show();
        }

    }
    class Tie : Finery
    {
        public override void show()
        {
            Console.Write("领带");
            base.show();
        }

    }
    class Suit : Finery
    {
        public override void show()
        {
            Console.Write("西装");
            base.show();
        }
    }

客户端代码:

 Person xc = new Person("小菜");
        Console.WriteLine("\n第一种装扮:");

        Sneakers pqx = new Sneakers();
        BigTrouser kk = new BigTrouser();
        TShirts dtx = new TShirts();

        pqx.Decorate(xc);
        kk.Decorate(pqx);
        dtx.Decorate(kk);
        dtx.show();

        Console.WriteLine("\n第二种装扮:");

        LeatherShoes px = new LeatherShoes();
        Tie ld = new Tie();
        Suit xz = new Suit();

        px.Decorate(xc);
        ld.Decorate(px);
        xz.Decorate(ld);
        xz.show();
        Console.ReadKey();

注意:Person类、服装类、具体服饰类之间的关系是继承,客户端的代码直接调用他们

那么什么时候用装饰模式呢?

1、装饰者和被装饰对象具有相同的类型
2、可以用一个或多个装饰者包装一个对象
3、由于装饰者和被装饰对象有相同的类型,所以在任何需要原始对象的场合,都可以用装饰过的对象代替他
4、装饰者可以在所委托被装饰着的行为之前或之后,加上自己的行为,以达到特定的目的
5、对象可以在任何时候被装饰,所以可以在运行时动态的,不限量的用需要的装饰者来装饰对象

以上是本人对装饰模式的理解,有什么不对、不合理的地方欢迎大家提出!

内容概要:该PPT详细介绍了企业架构设计的方法论,涵盖业务架构、数据架构、应用架构和技术架构四大核心模块。首先分析了企业架构现状,包括业务、数据、应用和技术四大架构的内容和关系,明确了企业架构设计的重要性。接着,阐述了新版企业架构总体框架(CSG-EAF 2.0)的形成过程,强调其融合了传统架构设计(TOGAF)和领域驱动设计(DDD)的优势,以适应数字化转型需求。业务架构部分通过梳理企业级和专业级价值流,细化业务能力、流程和对象,确保业务战略的有效落地。数据架构部分则遵循五大原则,确保数据的准确、一致和高效使用。应用架构方面,提出了分层解耦和服务化的设计原则,以提高灵活性和响应速度。最后,技术架构部分围绕技术框架、组件、平台和部署节点进行了详细设计,确保技术架构的稳定性和扩展性。 适合人群:适用于具有一定企业架构设计经验的IT架构师、项目经理和业务分析师,特别是那些希望深入了解如何将企业架构设计与数字化转型相结合的专业人士。 使用场景及目标:①帮助企业和组织梳理业务流程,优化业务能力,实现战略目标;②指导数据管理和应用开发,确保数据的一致性和应用的高效性;③为技术选型和系统部署提供科学依据,确保技术架构的稳定性和扩展性。 阅读建议:此资源内容详尽,涵盖企业架构设计的各个方面。建议读者在学习过程中,结合实际案例进行理解和实践,重点关注各架构模块之间的关联和协同,以便更好地应用于实际工作中。
资 源 简 介 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系, 详 情 说 明 独立分量分析(Independent Component Analysis,简称ICA)是近二十年来逐渐发展起来的一种盲信号分离方法。它是一种统计方法,其目的是从由传感器收集到的混合信号中分离相互独立的源信号,使得这些分离出来的源信号之间尽可能独立。它在语音识别、电信和医学信号处理等信号处理方面有着广泛的应用,目前已成为盲信号处理,人工神经网络等研究领域中的一个研究热点。 本文简要的阐述了ICA的发展、应用和现状,详细地论述了ICA的原理及实现过程,系统地介绍了目前几种主要ICA算法以及它们之间的内在联系,在此基础上重点分析了一种快速ICA实现算法一FastICA。物质的非线性荧光谱信号可以看成是由多个相互独立的源信号组合成的混合信号,而这些独立的源信号可以看成是光谱的特征信号。为了更好的了解光谱信号的特征,本文利用独立分量分析的思想和方法,提出了利用FastICA算法提取光谱信号的特征的方案,并进行了详细的仿真实验。 此外,我们还进行了进一步的研究,探索了其他可能的ICA应用领域,如音乐信号处理、图像处理以及金融数据分析等。通过在这些领域中的实验和应用,我们发现ICA在提取信号特征、降噪和信号分离等方面具有广泛的潜力和应用前景。
评论 18
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值