tensorflow(6)——卷积神经网络

本文通过使用TensorFlow构建卷积神经网络(CNN)对MNIST手写数字数据集进行分类,详细介绍了CNN的各层操作,包括卷积、池化、全连接层和Dropout,并展示了训练过程及结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习《Tensorflow入门教程》记录 

卷积神经网络流程框图如下:

First Conv and Pool Layers ——Second Conv and Pool Layers——First Fully Connected Layer——Dropout Layer——Second Fully Connected Layer——Final Layer
池化层简单理解:把卷积得到的结果进行降维处理。

示例代码:

import tensorflow as tf
import random
import numpy as np
import matplotlib.pyplot as plt
import datetime

from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("data/", one_hot=True)

tf.reset_default_graph()
sess = tf.InteractiveSession()
x = tf.placeholder("float", shape = [None, 28,28,1])
y_ = tf.placeholder("float", shape = [None, 10])

#5*5的卷积核  1个通道的输入图像  32个不同的卷积核,得到32个特征图
W_conv1 = tf.Variable(tf.truncated_normal([5, 5, 1, 32], stddev=0.1))
#偏置
b_conv1 = tf.Variable(tf.constant(.1, shape = [32]))

#进行卷积运算
#[1, 1, 1, 1] 中间2个1,卷积每次滑动的步长
#padding='SAME' 边缘自动补充
h_conv1 = tf.nn.conv2d(input=x, filter=W_conv1, strides=[1, 1, 1, 1], padding='SAME') + b_conv1
h_conv1 = tf.nn.relu(h_conv1)
#进行池化
h_pool1 = tf.nn.max_pool(h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

#定义为函数
def conv2d(x, W):
    return tf.nn.conv2d(input=x, filter=W, strides=[1, 1, 1, 1], padding='SAME')

def max_pool_2x2(x):
    return tf.nn.max_pool(x, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')

#第二次卷积和池化
W_conv2 = tf.Variable(tf.truncated_normal([5, 5, 32, 64], stddev=0.1))
b_conv2 = tf.Variable(tf.constant(.1, shape = [64]))
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

#First Fully Connected Layer
#经过了2次卷积和池化 28*28*1变成了7*7*64  定义得到了1024维特征
W_fc1 = tf.Variable(tf.truncated_normal([7 * 7 * 64, 1024], stddev=0.1))
b_fc1 = tf.Variable(tf.constant(.1, shape = [1024]))
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])   #把特征拉成1条
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)

#Dropout Layer,防止过拟合
keep_prob = tf.placeholder("float")
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)

#第二次全连接层
W_fc2 = tf.Variable(tf.truncated_normal([1024, 10], stddev=0.1))
b_fc2 = tf.Variable(tf.constant(.1, shape = [10]))

#Final Layer
y = tf.matmul(h_fc1_drop, W_fc2) + b_fc2

crossEntropyLoss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(labels = y_, logits = y))
trainStep = tf.train.AdamOptimizer().minimize(crossEntropyLoss)
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))

sess.run(tf.global_variables_initializer())

batchSize = 50
for i in range(1000):
    batch = mnist.train.next_batch(batchSize)
    trainingInputs = batch[0].reshape([batchSize,28,28,1])
    trainingLabels = batch[1]
    if i%100 == 0:
        trainAccuracy = accuracy.eval(session=sess, feed_dict={x:trainingInputs, y_: trainingLabels, keep_prob: 1.0})
        print ("step %d, training accuracy %g"%(i, trainAccuracy))
    trainStep.run(session=sess, feed_dict={x: trainingInputs, y_: trainingLabels, keep_prob: 0.5})

运行结果:
step 0, training accuracy 0.2
step 100, training accuracy 0.84
step 200, training accuracy 1
step 300, training accuracy 0.96
step 400, training accuracy 1
step 500, training accuracy 0.96
step 600, training accuracy 1
step 700, training accuracy 0.96
step 800, training accuracy 0.96
step 900, training accuracy 0.96

CH341A编程器是一款广泛应用的通用编程设备,尤其在电子工程和嵌入式系统开发领域中,它被用来烧录各种类型的微控制器、存储器和其他IC芯片。这款编程器的最新版本为1.3,它的一个显著特点是增加了对25Q256等32M芯片的支持。 25Q256是一种串行EEPROM(电可擦可编程只读存储器)芯片,通常用于存储程序代码、配置数据或其他非易失性信息。32M在这里指的是存储容量,即该芯片可以存储32兆位(Mbit)的数据,换算成字节数就是4MB。这种大容量的存储器在许多嵌入式系统中都有应用,例如汽车电子、工业控制、消费电子设备等。 CH341A编程器的1.3版更新,意味着它可以与更多的芯片型号兼容,特别是针对32M容量的芯片进行了优化,提高了编程效率和稳定性。26系列芯片通常指的是Microchip公司的25系列SPI(串行外围接口)EEPROM产品线,这些芯片广泛应用于各种需要小体积、低功耗和非易失性存储的应用场景。 全功能版的CH341A编程器不仅支持25Q256,还支持其他大容量芯片,这意味着它具有广泛的兼容性,能够满足不同项目的需求。这包括但不限于微控制器、EPROM、EEPROM、闪存、逻辑门电路等多种类型芯片的编程。 使用CH341A编程器进行编程操作时,首先需要将设备通过USB连接到计算机,然后安装相应的驱动程序和编程软件。在本例中,压缩包中的"CH341A_1.30"很可能是编程软件的安装程序。安装后,用户可以通过软件界面选择需要编程的芯片类型,加载待烧录的固件或数据,然后执行编程操作。编程过程中需要注意的是,确保正确设置芯片的电压、时钟频率等参数,以防止损坏芯片。 CH341A编程器1.3版是面向电子爱好者和专业工程师的一款实用工具,其强大的兼容性和易用性使其在众多编程器中脱颖而出。对于需要处理25Q256等32M芯片的项目,或者26系列芯片的编程工作,CH341A编程器是理想的选择。通过持续的软件更新和升级,它保持了与现代电子技术同步,确保用户能方便地对各种芯片进行编程和调试。
内存分区情况的分析是嵌入式系统开发中的一个重要环节,特别是在资源有限的MCU(微控制器)环境中。标题提到的工具是一款专为分析Linux环境下的`gcc-map`文件设计的工具,这类文件在编译过程结束后生成,包含了程序在目标设备内存中的布局信息。这个工具可以帮助开发者理解程序在RAM、ROM以及FLASH等存储区域的占用情况,从而进行优化。 `gcc-map`文件通常包含以下关键信息: 1. **符号表**:列出所有定义的全局和静态变量、函数以及其他符号,包括它们的地址和大小。 2. **节区分配**:显示每个代码和数据节区在内存中的位置,比如.text(代码)、.data(已初始化数据)、.bss(未初始化数据)等。 3. **内存汇总**:总览所有节区的大小,有助于评估程序的整体内存需求。 4. **重定位信息**:显示了代码和数据如何在目标地址空间中定位。 该分析工具可能提供以下功能: 1. **可视化展示**:将内存分配以图形化方式呈现,便于直观理解。 2. **详细报告**:生成详细的分析报告,列出每个符号的大小和位置。 3. **比较功能**:对比不同编译版本或配置的`map`文件,查看内存使用的变化。 4. **统计分析**:计算各种内存区域的使用率,帮助识别潜在的优化点。 5. **自定义过滤**:允许用户根据需要筛选和关注特定的符号或节区。 虽然在MCU环境中,Keil IDE自带的工具可能更方便,因为它们通常针对特定的MCU型号进行了优化,提供更加细致的硬件相关分析。然而,对于通用的Linux系统或跨平台项目,这款基于`gcc-map`的分析工具提供了更广泛的适用性。 在实际使用过程中,开发者可以利用这款工具来: - **优化内存使用**:通过分析哪些函数或数据占用过多的内存,进行代码重构或调整链接器脚本以减小体积。 - **排查内存泄漏**:结合其他工具,比如动态内存检测工具,查找可能导致内存泄漏的部分。 - **性能调优**:了解代码执行时的内存分布,有助于提高运行效率。 - **满足资源限制**:在嵌入式系统中,确保程序能在有限的内存空间内运行。 总结来说,`gcc-amap`这样的工具对于深入理解程序的内存布局和资源消耗至关重要,它能帮助开发者做出更明智的决策,优化代码以适应不同的硬件环境。在处理`map`文件时,开发者不仅能获取到程序的内存占用情况,还能进一步挖掘出可能的优化空间,从而提升系统的整体性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值