操作系统:进程管理

操作系统:进程管理

参考:

http://www.voidcn.com/blog/omenglishuixiang1234/article/p-5993213.html

http://www.cnblogs.com/balingybj/p/4790240.html

http://www.cnblogs.com/balingybj/p/4790201.html

http://c.biancheng.net/cpp/html/2589.html

1 进程与线程的区别

1.1 进程:

  • 是具有一定独立功能的程序,关于某个数据集合上的一次运行活动;

  • 是操作系统进行资源分配和调度的一个独立单位。

  • 进程是资源分配的最小单位。

    当用户运行一个程序,系统就创建一个进程,并为它分配资源,包括各种表格、内存空间、磁盘空间、I/O设备等,然后该进程放入到进程的就绪队列,进程调度程序选中它,为它分配CPU及其他相关资源,该进程就被运行起来。

1.2 线程:

  • 线程是进程的一个实体,是CPU调度和分配的基本单位,线程几乎不拥有系统资源,通常具有在运行中必不可少的资源(程序计数器、一组寄存器、栈),但它可以与同属于一个进程的其他线程共享进程拥有的全部资源。
  • 一个线程可以创建和撤销另一个线程,同一个进程中的多个线程可以并发执行。
  • 线程是程序执行的最小单位。
  • 注意:
  • 在没有实现线程的操作系统中,进程既是资源分配的基本单位,又是调度的基本单位,是系统中并发执行的单位。(UNIX)
  • 在实现了线程的操作系统中,进程是资源分配的基本单位,线程是调度的基本单位,是系统中并发执行的单元。(LINUX, WINDOWS)

1.3 引入线程的好处:

(1)易于调度

(2)可以方便有效的实现并发

(3)开销小,创建线程比创建进程要快,所需开销更小

和进程相比,是一种非常“节俭”的多任务操作方式,在Linux系统下,启动一个新进程必须分配给它独立的地址空间,建立众多的数据表维护它的代码段、堆栈段和数据段

(4)有利于发挥多处理器的功能。通过创建多线程,每个线程都在一个处理器上运行,从而实现应用程序的并行,使得每个处理器都得到充分运行。

1.4 线程和进程的区别:

(1)一个线程必定属于也只属于一个进程,而一个进程可有多个线程并且至少拥有一个线程。

(2)属于一个进程的所有线程共享该进程的所有资源,包括打开的文件、创建的Socket等。不同的进程互相独立。

(3)线程被称为轻量级进程。进程有进程控制块,线程也有线程控制块,但线程控制块比进程控制块小很多。线程间切换代价小,进程间切换代价大。

(4)进程是程序的一次执行,线程可理解为程序中的一段程序片段的执行。

(5)进程有独立的地址空间,一个进程崩溃后,在保护模式下不会对其他进程产生影响,而线程只是一个进程中的不同执行路径。线程有自己的堆栈和局部变量,但线程没有单独的地址空间,一个线程死掉就等于整个进程死掉,所以多进程的程序要比多线程的程序健壮,但在进程切换时,耗费资源较大,效率要差。对于一些要求同时进行并且又要共享某些变量的并发操作,只能用线程,不能用进程。

1.5 线程同步的机制:

​ 进程线程同步互斥的控制机制,是由最基本的4种方法实现的:临界区、互斥量、信号量、事件。

(1)临界区:通过对多线程的串行化来访问公共资源或一段代码,速度快,适合控制数据访问。

(2)互斥量:为协调共同对一个共享资源的单独访问而设计。只有拥有互斥对象的线程才有权限访问系统的公共资源,因为互斥对象只有一个,所以能保证资源不会被多个线程访问。互斥能实现同一应用程序的公共资源安全共享,和不同应用程序的资源安全共享。

(3)信号量:为控制一个具有有限数量的用户资源而设计,允许多个线程在同一时刻去访问同一个资源

(4)事件:通知线程已发生的时间,启动后继任务的开始。

1.6 同一进程中的线程共享的资源

​ 线程共享的环境包括:进程代码段、进程的公有数据(利用这些共享的数据,线程很容易的实现相互之间的通讯)、进程打开的文件描述符、信号的处理器、进程的当前目录和进程用户ID与进程组ID。

    进程拥有这许多共性的同时,还拥有自己的个性。有了这些个性,线程才能实现并发性。这些个性包括:

    1.线程ID
    每个线程都有自己的线程ID,这个ID在本进程中是唯一的。进程用此来标识线程。 

    2.寄存器组的值

​ 由于线程间是并发运行的,每个线程有自己不同的运行线索,当从一个线程切换到另一个线程上时,必须将原有的线程的寄存器集合的状态保存,以便将来该线程在被重新切换到时能得以恢复。

     3.线程的堆栈

     堆栈是保证线程独立运行所必须的。线程函数可以调用函数,而被调用函数中又是可以层层嵌套的,所以线程必须拥有自己的函数堆栈,使得函数调用可以正常执行,不受其他线程的影响。

    4.错误返回码
       由于同一个进程中有很多个线程在同时运行,可能某个线程进行系统调用后设置了error值,而在该线程还没有处理这个错误,另外一个线程就在此时被调度器投入运行,这样错误值就有可能被修改。所以,不同的线程应该拥有自己的错误返回码变量。

    5.线程的信号屏蔽码
       由于每个线程所感兴趣的信号不同,所以线程的信号屏蔽码应该由线程自己管理。但所有的线程都共享同样的信号处理器。

    6.线程的优先级
       由于线程需要像进程那样能够被调度,那么就必须要有可供调度使用的参 数,这个参数就是线程的优先级。

​ 涉及多线程的时候,程序经常会出现一些令人难以思议的事情,用堆和栈分配一个变量可能在以后的执行中产生意想不到的结果,而这个结果的表现就是内存的非法被访问,导致内存的内容被更改。 
  理解这个现象的两个基本概念是:在一个进程的线程共享堆区,而进程中的线程各自维持自己堆栈。 
  另一运行机制就是如果声明一个成员变量如 char Name[200],随着这段代码调用的结束,Name在栈区的地址被释放,而如果是 char * Name = new char[200]; 情况则完全不同,除非显示调用delete否则 Name指向的地址不会被释放。 
  在B中如果用栈区,即采用临时变量的机制分配声明V和堆区,而者的结果是不同的。如果用栈区,如果变量地址为Am1-Am2这么大,退出B调用时候这段地址被释放,C函数可能将这段内存改写;这样当D执行的时候,从内存Am1-Am2中读取的内容就是被改过的了。 
  而如果用New(堆)分配,则不会出现那样的情况,因为没有显示对用delete并且堆对于线程共享,即2线程可以看到1线程在堆里分配的东西,所以不会发生误写。 
  这个问题是笔者在公司实习的时候发现的,因为当时刚刚涉及多线程程序设计,操作系统中如此简单的话题困扰笔者很久,希望可以对初涉C++多线程的读者有所帮助! 如果两个线程共享堆,而且都有可能执行内存分配和释放操作,就必须进行同步保护,这个和C类,R类,T类没有关系。你看到的例子两个线程应该是使用各自的堆。 
  在 windows 等平台上,不同线程缺省使用同一个堆,所以用 C 的 malloc (或者 windows 的 GlobalAlloc)分配内存的时候是使用了同步保护的。如果没有同步保护,在两个线程同时执行内存操作的时候会产生竞争条件,可能导致堆内内存管理混乱。比如两个线程分配了统一块内存地址,空闲链表指针错误等。 
  Symbian 的线程一般使用独立的堆空间。这样每个线程可以直接在自己的堆里分配和释放,可以减少同步所引入的开销。当线程退出的时候,系统直接回收线程的堆空间,线程内没有释放的内存空间也不会造成进程内的内存泄漏。 
  但是两个线程使用共用堆的时候,就必须用 critical section(临界区) 或者 mutex(互斥量) 进行同步保护。否则程序崩溃是早晚的事。如果你的线程需要在共用堆上无规则的分配和释放任何数量和类型的对象,可以定制一个自己的 allcator,在 allocator 内部使用同步保护。线程直接使用这个 allocator 分配内存就可以了。这相当于实现自己的 malloc,free。但是更建议你重新审查一下自己的系统,因为这种情况大多数是不必要的。经过良好的设计,线程的本地堆应该能够满足大多数对象的需求。如果有某一类对象需要在共享堆上创建和共享,这种需求是比较合理的,可以在这个类的 new 和 delete 上实现共享保护。

2 内核线程和用户线程的区别

​ 根据操作系统内核是否对线程可感知,线程的实现可以分为两类:用户级线程(User-Level Thread)和内核线线程(Kernel-Level Thread),后者又称为内核支持的线程或轻量级进程。在多线程操作系统中,各个系统的实现方式并不相同,在有的系统中实现了用户级线程,有的系统中实现了内核级线程。

​ 内核线程:建立和销毁都是由操作系统辅助、通过系统调用完成的,操作系统在调度时,参考各进程内的线程运行情况作出调度决定,维护进程和线程的上下文信息、线程切换。如果一个进程中没有就绪态的线程,那么这个进程也不会被调度占用CPU。一个内核线程由于I/O操作而阻塞,不会影响其它线程的运行。Windows NT和2000/XP支持内核线程。

内核级线程切换由内核控制,当线程进行切换的时候,由用户态转化为内核态。切换完毕要从内核态返回用户态;可以很好的利用smp,即利用多核cpu。windows线程就是这样的。

​ 用户线程:指不需要内核支持而在用户程序中实现的线程,其不依赖于操作系统核心,用户进程利用线程库提供创建、同步、调度和管理线程的函数来控制用户线程。用户线程多见于一些历史悠久的操作系统,如UNIX操作系统,不需要用户态/核心态切换,速度快,操作系统内核不知道多线程的存在,因此一个线程阻塞将使得整个进程(包括它的所有线程)阻塞。由于这里的处理器时间片分配是以进程为基本单位的,所以每个线程执行的时间相对减少。为了在操作系统中加入线程支持,采用了在用户控件增加运行库来实现线程,这些运行库被称为“线程包”,用户线程是不能被操作系统所感知的。

用户线程运行在一个中间系统上面。目前中间系统实现的方式有两种,即运行时系统(Runtime System)和内核控制线程。“运行时系统”实质上是用于管理和控制线程的函数集合,包括创建、撤销、线程的同步和通信的函数以及调度的函数。这些函数都驻留在用户空间作为用户线程和内核之间的接口。用户线程不能使用系统调用,而是当线程需要系统资源时,将请求传送给运行时,由后者通过相应的系统调用来获取系统资源。内核控制线程:系统在分给进程几个轻型进程(LWP),LWP可以通过系统调用来获得内核提供的服务,而进程中的用户线程可通过复用来关联到LWP,从而得到内核的服务。

用户级线程内核的切换由用户态程序自己控制内核切换,不需要内核干涉,少了进出内核态的消耗,但不能很好的利用多核Cpu,目前Linux pthread大体是这么做的。

2.1 用户级线程和内核级线程的区别:

(1)内核级线程是OS内核可感知的,而用户级线程是OS内核不可感知的。

(2)用户级线程的创建、撤消和调度不需要OS内核的支持,是在语言(如Java)这一级处理的;而内核支持线程的创建、撤消和调度都需OS内核提供支持,而且与进程的创建、撤消和调度大体是相同的。

(3)用户级线程执行系统调用指令时将导致其所属进程被中断,而内核支持线程执行系统调用指令时,只导致该线程被中断。

(4)在只有用户级线程的系统内,CPU调度还是以进程为单位,处于运行状态的进程中的多个线程,由用户程序控制线程的轮换运行;在有内核支持线程的系统内,CPU调度则以线程为单位,由OS的线程调度程序负责线程的调度。

(5)用户级线程的程序实体是运行在用户态下的程序,而内核支持线程的程序实体则是可以运行在任何状态下的程序。

2.2 内核线程优缺点

优点:

(1)当有多个处理机时,一个进程的多个线程可以同时执行

缺点:

(1)由内核进行调度。

2.3 用户线程优缺点 

优点:

(1) 线程的调度不需要内核直接参与,控制简单。

(2) 可以在不支持线程的操作系统中实现。

(3) 创建和销毁线程、线程切换代价等线程管理的代价比内核线程少得多。

(4) 允许每个进程定制自己的调度算法,线程管理比较灵活。这就是必须自己写管理程序,与内核线程的区别

(5) 线程能够利用的表空间和堆栈空间比内核级线程多。

缺点:

同一进程中只能同时有一个线程在运行,如果有一个线程使用了系统调用而阻塞,那么整个进程都会被挂起。另外,页面失效也会产生同样的问题。

​ 资源调度按照进程进行,多个处理机下,同一个进程中的线程只能在同一个处理机下分时复用

​ 内核线程的优缺点刚好跟用户线程相反。实际上,操作系统可以使用混合的方式来实现线程。

3 进程的状态与转换

img
​ 五种进程状态的转换

(注意,应该改成运行到阻塞方向的箭头箭头,如下:)

img

基本状态:

运行、就绪、阻塞

还有:

创建、结束

​ 进程在其生命周期内,由于系统中各进程之间的相互制约关系及系统的运行环境的变化,使得进程的状态也在不断地发生变化(一个进程会经历若干种不同状态)。通常进程有以下五种状态,前三种是进程的基本状态。

1) 运行状态:进程正在处理机上运行。在单处理机环境下,每一时刻最多只有一个进程处于运行状态。

2) 就绪状态:进程已处于准备运行的状态,即进程获得了除处理机之外的一切所需资源,一旦得到处理机即可运行。

3) 阻塞状态,又称等待状态:进程正在等待某一事件而暂停运行,如等待某资源为可用(不包括处理机)或等待输入/输出完成。即使处理机空闲,该进程也不能运行。

4) 创建状态:进程正在被创建,尚未转到就绪状态。创建进程通常需要多个步骤:首先申请一个空白的PCB,并向PCB中填写一些控制和管理进程的信息;然后由系统为该进程分配运行时所必需的资源;最后把该进程转入到就绪状态。

5) 结束状态:进程正从系统中消失,这可能是进程正常结束或其他原因中断退出运行。当进程需要结束运行时,系统首先必须置该进程为结束状态,然后再进一步处理资源释放和回收等工作。

注意区别就绪状态和等待状态:就绪状态是指进程仅缺少处理机,只要获得处理机资源就立即执行;而等待状态是指进程需要其他资源(除了处理机)或等待某一事件。之所以把处理机和其他资源划分开,是因为在分时系统的时间片轮转机制中,每个进程分到的时间片是若干毫秒。也就是说,进程得到处理机的时间很短且非常频繁,进程在运行过程中实际上是频繁地转换到就绪状态的;而其他资源(如外设)的使用和分配或者某一事件的发生(如I/O操作的完成)对应的时间相对来说很长,进程转换到等待状态的次数也相对较少。这样来看,就绪状态和等待状态是进程生命周期中两个完全不同的状态,很显然需要加以区分。

就绪状态 -> 运行状态:处于就绪状态的进程被调度后,获得处理机资源(分派处理机时间片),于是进程由就绪状态转换为运行状态。

运行状态 -> 就绪状态:处于运行状态的进程在时间片用完后,不得不让出处理机,从而进程由运行状态转换为就绪状态。此外,在可剥夺的操作系统中,当有更高优先级的进程就 、 绪时,调度程度将正执行的进程转换为就绪状态,让更高优先级的进程执行。

运行状态 -> 阻塞状态:当进程请求某一资源(如外设)的使用和分配或等待某一事件的发生(如I/O操作的完成)时,它就从运行状态转换为阻塞状态。进程以系统调用的形式请求操作系统提供服务,这是一种特殊的、由运行用户态程序调用操作系统内核过程的形式。

阻塞状态 -> 就绪状态:当进程等待的事件到来时,如I/O操作结束或中断结束时,中断处理程序必须把相应进程的状态由阻塞状态转换为就绪状态。

实验目的 设计一个有 N个进程并行的进程调度程序。采用最高优先级优先的调度算法进行进程调度的模拟。 实验要求 设计一个有 N个进程并行的进程调度程序。采用最高优先级优先的调度算法进行进程调度的模拟。 实验原理 每个进程用一个进程控制块( PCB)表示。进程控制块可以包含进程名、优先级、到达时间、需要运行时间、已用CPU时间、进程状态等等。 进程的运行时间以时间片为单位进行计算。 每个进程的状态可以是就绪 W(Wait)、运行R(Run)、或完成F(Finish)三种状态之一。进程名、优先级、需要运行时间通过键盘输入。就绪进程获得 CPU后都只能运行一个时间片。用已占用CPU时间加1来表示。运行一个时间片后,进程的已占用 CPU时间已达到所需要的运行时间,则撤消进程,否则将进程的优先级减1(即降低一级),然后把它插入就绪队列等待CPU。每进行一次调度程序都打印一次运行进程、就绪队列、以及各个进程的 PCB,以便进行检查。 重复以上过程,直到所有进程都完成为止。 实验仪器 PC及其LINUX操作系统 实验步骤 调度算法的流程图如下 : 实验内容 程序部分: #include "stdio.h" #include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int super; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->super)>(ready->super))) /*优先级最大者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->super)>(second->super)) /*若插入进程比当前进程优先数大,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p; second=NULL; insert=1; } else /* 插入进程优先数最低,则插入到队尾*/ { first=first->link; second=second->link; } } if(insert==0) first->link=p; } } void input() /* 建立进程控制块函数*/ { int i,num; //clrscr(); /*清屏*/ printf("\n 请输入进程号?"); scanf("%d",#); for(i=0;iname); printf("\n 输入进程优先数:"); scanf("%d",&p->super); printf("\n 输入进程运行时间:"); scanf("%d",&p->ntime); printf("\n"); p->rtime=0;p->state='w'; p->link=NULL; sort(); /* 调用sort函数*/ } } int space() { int l=0; PCB* pr=ready; while(pr!=NULL) { l++; pr=pr->link; } return(l); } void disp(PCB * pr) /*建立进程显示函数,用于显示当前进程*/ { printf("\n qname \t state \t super \t ndtime \t runtime \n"); printf("|%s\t",pr->name); printf("|%c\t",pr->state); printf("|%d\t",pr->super); printf("|%d\t",pr->ntime); printf("|%d\t",pr->rtime); printf("\n"); } void check() /* 建立进程查看函数 */ { PCB* pr; printf("\n **** 当前正在运行的进程:%s",p->name); /*显示当前运行进程*/ disp(p); pr=ready; printf("\n ****当前就绪队列状态为:\n"); /*显示就绪队列状态*/ while(pr!=NULL) { disp(pr); pr=pr->link; } } void destroy() /*建立进程撤消函数(进程运行结束,撤消进程)*/ { printf("\n 进程 [%s] 已完成.\n",p->name); free(p); } void running() /* 建立进程就绪函数(进程运行时间到,置就绪状态*/ { (p->rtime)++; if(p->rtime==p->ntime) destroy(); /* 调用destroy函数*/ else { (p->super)--; p->state='w'; sort(); /*调用sort函数*/ } } void main() /*主函数*/ { int len,h=0; char ch; input(); len=space(); while((len!=0)&&(ready!=NULL)) { ch=getchar(); h++; printf("\n The execute number:%d \n",h); p=ready; ready=p->link; p->link=NULL; p->state='R'; check(); running(); printf("\n 按任一键继续......"); ch=getchar(); } printf("\n\n 进程已经完成.\n"); ch=getchar(); }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值