机器学习实战 Logistic回归

本文介绍Sigmoid函数及其实现逻辑回归的方法,并详细解释了梯度上升法的原理和应用过程,包括其迭代公式及其在Logistic回归中的具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Sigmoid函数:

11+ez11+e−z
z=w0x0+w1x1+w2x2+...+wnxxz=w0x0+w1x1+w2x2+...+wnxxz=wTxz=wTx
在每个特征上都乘以一个回归系数,然后把所有结果值相加,将这个总和代入Sigmoid函数中,进而得到一个范围在0~1直接的数值。(1类:大于0.5; 0类:小于0.5)

梯度上升法

梯度上升法基于的思想是:要找到函数的最大值,最好是沿着该函数的梯度方向探寻
f(x,y)=f(x,y)xf(x,y)y∇f(x,y)=(∂f(x,y)∂x∂f(x,y)∂y)

  • 梯度上升的迭代公式:w:=w+αwf(w)w:=w+α∇wf(w)αα为步长)
  • 梯度下降的迭代公式:w:=wαwf(w)w:=w−α∇wf(w)αα为步长)

Logistic回归梯度上升优化算法:

from numpy import *
def loadDataSet():
    dataMat = []
    labelMat = []
    fr = open('testSet.txt')
    for line in fr.readlines():
        lineArr = line.strip().split()
        dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])])
        labelMat.append(int(lineArr[2]))
    return dataMat,labelMat

def sigmoid(inX):
    return 1.0/(1+exp(-inX))

def gradAscent(dataMatIn, classLabels):
    dataMatrix = mat(dataMatIn)
    labelMat = mat(classLabels).transpose()#转置矩阵
    m,n = shape(dataMatrix)
    alpha = 0.001
    maxCycles = 500#迭代次数上限
    weights = ones((n,1))
    for k in range(maxCycles):
        h = sigmoid(dataMatrix * weights)
        error = (labelMat - h)
        weights = weights + alpha * dataMatrix.transpose() * error
    return weights

def plotBestFit(weights):
    import matplotlib.pyplot as plt
    dataMat,labelMat = loadDataSet()
    dataArr = array(dataMat)
    n = shape(dataArr)[0]#行
    xcord1 = []
    ycord1 = []
    xcord2 = []
    ycord2 = []
    for i in range(n):
        if int(labelMat[i]) == 1:
            xcord1.append(dataArr[i,1])
            ycord1.append(dataArr[i,2])
        else:
            xcord2.append(dataArr[i,1])
            ycord2.append(dataArr[i,2])
    fig = plt.figure()
    ax = fig.add_subplot(111)
    ax.scatter(xcord1, ycord1, s=30, c='red', marker='s')
    ax.scatter(xcord2, ycord2, s=30,c='green')
    x = arange(-3.0, 3.0, 0.1)
    y = (-weights[0] - weights[1] * x) / weights[2]
    ax.plot(x,y)
    plt.xlabel('X1')
    plt.ylabel('X2')
    plt.show()

if __name__ == '__main__':
    dataArr,labelMat = loadDataSet()
    w = gradAscent(dataArr,labelMat)
    plotBestFit(w.getA())

输出结果:
这里写图片描述

随机梯度上升

随机梯度上升算法:

def stocGradAscent0(dataMatrix, classLabels):
    m,n = shape(dataMatrix)
    alpha = 0.01
    weights = ones(n)
    for i in range(m):
        h = sigmoid(sum(dataMatrix[i]*weights))
        error = classLabels[i] - h
        weights = weights + alpha * error * dataMatrix[i]
    return weights

输出结果:
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值