HDU-5914 Triangle(思路)

探讨了在1到n的整数集合中,为了防止任意三数构成三角形,需要移除的最少整数数量。通过算法实现,采用两变量作为边长,遍历第三边,若大于两变量之和则移除。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Triangle

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 203    Accepted Submission(s): 145


Problem Description
Mr. Frog has n sticks, whose lengths are 1,2, 3 n respectively. Wallice is a bad man, so he does not want Mr. Frog to form a triangle with three of the sticks here. He decides to steal some sticks! Output the minimal number of sticks he should steal so that Mr. Frog cannot form a triangle with
any three of the remaining sticks.
 

Input
The first line contains only one integer T ( T20 ), which indicates the number of test cases.  

For each test case, there is only one line describing the given integer n ( 1n20 ).
 

Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1), y is the minimal number of sticks Wallice should steal.
 

Sample Input
  
3 4 5 6
 

Sample Output
  
Case #1: 1 Case #2: 1 Case #3: 2
 

Source
 

题意:1,2……n共n个数中,至少抽出多少数才可以不可能组成三角形。


思路:两个变量充当两边,枚举第三个数,如果大于两个变量的和就去掉第三个数,依次迭代。


ps:还看到有人用的什么去掉不是斐波那契数的就可以了,这个是为什么?是有什么定理,还是靠规律和结果推得啊,求大牛随手解答。

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;

int main()
{
    int t,n;
    cin >> t;
    for(int ca = 1;ca <= t;ca++)
    {
        scanf("%d",&n);
        printf("Case #%d: ",ca);
        if(n <= 3)
            printf("0\n");
        else
        {
            int a = 2,b = 3,sum = 0;
            for(int i = 4;i <= n;i++)
            {
                if(a+b > i)
                    sum++;
                else
                    a = b,b = i;
            }
            printf("%d\n",sum);
        }
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值