Triangle
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 203 Accepted Submission(s): 145
Problem Description
Mr. Frog has n sticks, whose lengths are 1,2, 3
⋯
n respectively. Wallice is a bad man, so he does not want Mr. Frog to form a triangle with three of the sticks here. He decides to steal some sticks! Output the minimal number of sticks he should steal so that Mr. Frog cannot form a triangle with
any three of the remaining sticks.
any three of the remaining sticks.
Input
The first line contains only one integer T (
T≤20
), which indicates the number of test cases.
For each test case, there is only one line describing the given integer n ( 1≤n≤20 ).
For each test case, there is only one line describing the given integer n ( 1≤n≤20 ).
Output
For each test case, output one line “Case #x: y”, where x is the case number (starting from 1), y is the minimal number of sticks Wallice should steal.
Sample Input
3 4 5 6
Sample Output
Case #1: 1 Case #2: 1 Case #3: 2
Source
题意:1,2……n共n个数中,至少抽出多少数才可以不可能组成三角形。
思路:两个变量充当两边,枚举第三个数,如果大于两个变量的和就去掉第三个数,依次迭代。
ps:还看到有人用的什么去掉不是斐波那契数的就可以了,这个是为什么?是有什么定理,还是靠规律和结果推得啊,求大牛随手解答。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int main()
{
int t,n;
cin >> t;
for(int ca = 1;ca <= t;ca++)
{
scanf("%d",&n);
printf("Case #%d: ",ca);
if(n <= 3)
printf("0\n");
else
{
int a = 2,b = 3,sum = 0;
for(int i = 4;i <= n;i++)
{
if(a+b > i)
sum++;
else
a = b,b = i;
}
printf("%d\n",sum);
}
}
return 0;
}