文章目录
1 Elasticsearch概述
1.1 全文搜索引擎
Google,百度类的网站搜索,它们都是根据网页中的关键字生成索引,我们在搜索的时候输入关键字,它们会将该关键字即索引匹配到的所有网页返回;还有常见的项目中应用日志的搜索等等。
对于这些非结构化的数据文本,关系型数据库搜索不是能很好的支持。一般传统数据库,全文检索都实现的很鸡肋,因为一般也没人用数据库存文本字段。进行全文检索需要扫描整个表,如果数据量大的话即使对 SQL 的语法优化,也收效甚微。建立了索引,但是维护起来也很麻烦,对于 insert 和 update 操作都会重新构建索引。
基于以上原因可以分析得出,在一些生产环境中,使用常规的搜索方式,性能是非常差的场景:
- 搜索的数据对象是大量的非结构化的文本数据。
- 文件记录量达到数十万或数百万个甚至更多。
- 支持大量基于交互式文本的查询。
- 需求非常灵活的全文搜索查询。
- 对高度相关的搜索结果的有特殊需求,但是没有可用的关系数据库可以满足。
- 对不同记录类型、非文本数据操作或安全事务处理的需求相对较少的情况。
为了解决结构化数据搜索和非结构化数据搜索性能问题,我们就需要专业,健壮,强大的全文搜索引擎
这里说到的全文搜索引擎指的是目前广泛应用的主流搜索引擎。它的工作原理是计算机索引程序通过扫描文章中的每一个词,对每一个词建立一个索引,指明该词在文章中出现的次数和位置,当用户查询时,检索程序就根据事先建立的索引进行查找,并将查找的结果反馈给用户的检索方式。这个过程类似于通过字典中的检索字表查字的过程。
1.2 Elasticsearch介绍
The Elastic Stack, 包括 Elasticsearch、Kibana、Beats 和 Logstash(也称为 ELK Stack)。能够安全可靠地获取任何来源、任何格式的数据,然后实时地对数据进行搜索、分析和可视化。Elaticsearch,简称为 ES,ES 是一个开源的分布式,RESTful风格的,高扩展的分布式全文搜索引擎,是整个 Elastic Stack 技术栈的核心。它可以近乎实时的存储、检索数据;本身扩展性很好,可以扩展到上百台服务器,处理 PB 级别的数据。
1.3 Elasticsearch 和 Solr
Lucene 是 Apache 软件基金会 Jakarta 项目组的一个子项目,提供了一个简单却强大的应用程式接口,能够做全文索引和搜寻。在 Java 开发环境里 Lucene 是一个成熟的免费开源工具。就其本身而言,Lucene 是当前以及最近几年最受欢迎的免费 Java 信息检索程序库。但 Lucene 只是一个提供全文搜索功能类库的核心工具包,而真正使用它还需要一个完善的服务框架搭建起来进行应用。
目前市面上流行的搜索引擎软件,主流的就两款:Elasticsearch 和 Solr,这两款都是基于 Lucene 搭建的,可以独立部署启动的搜索引擎服务软件。由于内核相同,所以两者除了服务器安装、部署、管理、集群以外,对于数据的操作 修改、添加、保存、查询等等都十分类似。
在使用过程中,一般都会将 Elasticsearch 和 Solr 这两个软件对比,然后进行选型。这两个搜索引擎都是流行的,先进的的开源搜索引擎。它们都是围绕核心底层搜索库 - Lucene构建的 - 但它们又是不同的。
Elasticsearch 和 Solr 的比较
- 与 Solr 相比,Elasticsearch 易于安装且非常轻巧。此外,你可以在几分钟内安装并运Elasticsearch。但是,如果 Elasticsearch 管理不当,这种易于部署和使用可能会成为一个问题。基于 JSON 的配置很简单,但如果要为文件中的每个配置指定注释,那么它不适合您。总的来说,如果你的应用使用的是 JSON,那么 Elasticsearch 是一个更好的选择。否则,请使用 Solr,因为它的 schema.xml 和 solrconfig.xml 都有很好的文档记录。
- Solr 拥有更大,更成熟的用户,开发者和贡献者社区。ES 虽拥有的规模较小但活跃的用户社区以及不断增长的贡献者社区。Solr 更成熟,但 ES 增长迅速,更稳定。
Elasticsearch 和 Solr 的选择
由于易于使用,Elasticsearch 在新开发者中更受欢迎。一个下载和一个命令就可以启动一切。
- 如果除了搜索文本之外还需要它来处理分析查询,Elasticsearch 是更好的选择
- 如果需要分布式索引,则需要选择 Elasticsearch。对于需要良好可伸缩性和以及性能分布式环境,Elasticsearch 是更好的选择。
- Elasticsearch 在开源日志管理用例中占据主导地位,许多组织在 Elasticsearch 中索引它们的日志以使其可搜索。
- 如果你喜欢监控和指标,那么请使用 Elasticsearch,因为相对于 Solr,Elasticsearch 暴露了更多的关键指标
2 Elasticsearch 安装
Elasticsearch 的官方地址:https://www.elastic.co/cn/
Elasticsearch 下载地址:https://www.elastic.co/cn/downloads/past-releases#elasticsearch,
选择 7.8.0 版本下载和操作,Elasticsearch 分为 Linux 和 Windows 版本,基于我们主要学习的是 Elasticsearch 的 Java客户端的使用,下面安装较为简便的 Windows 版本。Windows 版的 Elasticsearch 的安装很简单,解压即安装完毕,解压后的 Elasticsearch 的目录结构如下:
解压后,进入 bin 文件目录,点击 elasticsearch.bat 文件启动 ES 服务
注意:9300 端口为 Elasticsearch 集群间组件的通信端口,9200 端口为浏览器访问的 协议 RESTful 端。打开浏览器(推荐使用谷歌浏览器),输入地址:http://localhost:9200,测试结果
常见问题:
Elasticsearch 是使用 Java 开发的,且 7.8 版本的 ES 需要 JDK 版本 1.8 以上,默认安装包带有 jdk 环境,如果系统配置 JAVA_HOME,那么使用系统默认的 JDK,如果没有配置使用自带的 JDK,一般建议使用系统配置的 JDK。 双击启动窗口闪退,通过路径访问追踪错误,如果是“空间不足”,请修改config/jvm.options 配置文件
3 数据格式
Elasticsearch 是面向文档型数据库,一条数据在这里就是一个文档。为了方便大家理解,
我们将 Elasticsearch 里存储文档数据和关系型数据库 MySQL 存储数据的概念进行一个类比
ES 里的 Index 可以看做一个库,而 Type 相当于表,Document 则相当于表的行。这里 Type的概念已经被逐渐弱化,Elasticsearch 6.X 中,一个 index 下已经只能包含一个type,Elasticsearch 7.X 中, Type 的概念已经被删除了。
下面分别说说索引,类型,文档,字段,映射这几个概念
3.1 索引(Index)
Elasticsearch 索引的精髓:一切设计都是为了提高搜索的性能。
一个索引就是一个拥有几分相似特征的文档的集合。比如说,你可以有一个客户数据的索引,另一个产品目录的索引,还有一个订单数据的索引。一个索引由一个名字来标识(必须全部是小写字母),并且当我们要对这个索引中的文档进行索引、搜索、更新和删除的时候,都要使用到这个名字。在一个集群中,可以定义任意多的索引。能搜索的数据必须索引,这样的好处是可以提高查询速度,比如:新华字典前面的目录就是索引的意思,目录可以提高查询速度。
3.2 类型(Type)
在一个索引中,你可以定义一种或多种类型。一个类型是你的索引的一个逻辑上的分类/分区,其语义完全由你来定。通常会为具有一组共同字段的文档定义一个类型。不同的版本,类型(Type)有不同的变化。
3.3 文档(Document)
一个文档是一个可被索引的基础信息单元,也就是一条数据。比如:你可以拥有某一个客户的文档,某一个产品的一个文档,当然,也可以拥有某个订单的一个文档。文档以 JSON(Javascript Object Notation)格式来表示,而 JSON 是一个到处存在的互联网数据交互格式。在一个 index/type 里面,你可以存储任意多的文档。
3.4 字段(Field)
相当于是数据表的字段,对文档数据根据不同属性进行的分类标识。
3.5 映射(Mapping)
mapping 是处理数据的方式和规则方面做一些限制,如:某个字段的数据类型、默认值、分析器、是否被索引等等。这些都是映射里面可以设置的,其它就是处理 ES 里面数据的一些使用规则设置也叫做映射,按着最优规则处理数据对性能提高很大,因此才需要建立映射,并且需要思考如何建立映射才能对性能更好。
4 HTTP操作
4.1 RESTful
REST 指的是一组架构约束条件和原则。满足这些约束条件和原则的应用程序或设计就是 RESTful。Web 应用程序最重要的 REST 原则是,客户端和服务器之间的交互在请求之间是无状态的。从客户端到服务器的每个请求都必须包含理解请求所必需的信息。如果服务器在请求之间的任何时间点重启,客户端不会得到通知。此外,无状态请求可以由任何可用服务器回答,这十分适合云计算之类的环境。客户端可以缓存数据以改进性能。在服务器端,应用程序状态和功能可以分为各种资源。资源是一个有趣的概念实体,它向客户端公开。资源的例子有:应用程序对象、数据库记录、算法等等。每个资源都使用 URI (Universal Resource Identifier) 得到一个唯一的地址。所有资源都共享统一的接口,以便在客户端和服务器之间传输状态。使用的是标准的 HTTP 方法,比如 GET、PUT、POST 和
DELETE。
在 REST 样式的 Web 服务中,每个资源都有一个地址。资源本身都是方法调用的目标方法列表对所有资源都是一样的。这些方法都是标准方法,包括 HTTP GET、POST、PUT、DELETE,还可能包括 HEAD 和 OPTIONS。简单的理解就是,如果想要访问互联网上的资源,就必须向资源所在的服务器发出请求,请求体中必须包含资源的网络路径,以及对资源进行的操作(增删改查)
4.2 索引操作
4.2.1 创建索引
对比关系型数据库,创建索引就等同于创建数据库
在 Postman 中,向 ES 服务器发 PUT 请求 :http://127.0.0.1:9200/shopping
注意:创建索引库的分片数默认 1 片,在 7.0.0 之前的 Elasticsearch 版本中,默认 5 片。如果重复添加索引,会返回错误信息。
4.2.2 查看索引
查看所有索引,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/_cat/indices?v
这里请求路径中的_cat 表示查看的意思,indices 表示索引,所以整体含义就是查看当前 ES
服务器中的所有索引,就好像 MySQL 中的 show tables 的感觉,服务器响应结果如下
查看单个索引
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/shopping
查看索引向 ES 服务器发送的请求路径和创建索引是一致的。但是 HTTP 方法不一致。
4.2.3 删除索引
在 Postman 中,向 ES 服务器发 DELETE 请求 :http://127.0.0.1:9200/shopping
重新访问索引时,服务器返回响应:索引不存在
4.3 文档操作
4.3.1 创建文档
索引已经创建好了,接下来我们来创建文档,并添加数据。如果没有索引,创建文档的同时会同步创建索引。
这里的文档可以类比为关系型数据库中的表数据,添加的数据格式为 JSON 格式。
在 Postman 中,向 ES 服务器发 POST 请求 :http://127.0.0.1:9200/shopping/_doc
{
"title":"小米手机",
"category":"小米",
"images":"http://www.gulixueyuan.com/xm.jpg",
"price":3999.00
}
此处发送请求的方式必须为 POST,不能是 PUT,否则会发生错误
上面的数据创建后,由于没有指定数据唯一性标识(ID),默认情况下,ES 服务器会随机生成一个。如果想要自定义唯一性标识,需要在创建时指定:http://127.0.0.1:9200/shopping/_doc/1
此处需要注意:如果增加数据时明确数据主键,那么请求方式也可以为 PUT
4.3.2 查看文档
查看文档时,需要指明文档的唯一性标识,类似于 MySQL 中数据的主键查询
在 Postman 中,向 ES 服务器发 GET 请求 :http://127.0.0.1:9200/shopping/_doc/1
4.3.3 修改文档
和新增文档一样,输入相同的 URL 地址请求,如果请求体变化,会将原有的数据内容覆盖
在 Postman 中,向 ES 服务器发 POST 请求 :http://127.0.0.1:9200/shopping/_doc/1
请求体内容为:
{
"title":"华为手机",
"category":"华为",
"images":"http://www.gulixueyuan.com/hw.jpg",
"price":4999.00
}
4.3.4 修改字段
修改数据时,也可以只修改某一给条数据的局部信息。
在 Postman 中,向 ES 服务器发 POST 请求 :http://127.0.0.1:9200/shopping/_update/1
请求体内容为:
{
"doc": {
"price":3000.00
}
}
修改成功后,服务器响应结果:
根据唯一性标识,查询文档数据,文档数据已经更新
4.3.5 删除文档
删除一个文档不会立即从磁盘上移除,它只是被标记成已删除(逻辑删除)。
在 Postman 中,向 ES 服务器发 DELETE 请求 :http://127.0.0.1:9200/shopping/_doc/1
查看不存在的文档
4.3.6 根据条件删除文档
一般删除数据都是根据文档的唯一性标识进行删除,实际操作时,也可以根据条件对多条数
据进行删除
首先分别增加多条数据:
向 ES 服务器发 POST 请求 :http://127.0.0.1:9200/shopping/_delete_by_query
请求体内容为:
{
"query": {
"match": {
"price": 4000.00
}
}
}
删除成功后,服务器响应结果: