POJ 2914 Minimum Cut 全局最小割

本文介绍了一种求解无向图全局最小割的问题,并提供了一个使用Stoer-Wagner算法的具体实现。该算法通过逐步合并顶点来寻找图中最小的边割集。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

求无向图的最小割

刷UOJ用户群的时候看到有人问一道全局最小割的裸题。。忽然想起之前还坑着Stoer Wagner算法。。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define FOR(i,j,k) for(i=j;i<=k;++i)
const int N = 501;
int vis[N], dis[N], v[N], a[N][N];
int stoer_wagner(int n) {
    int i, j, ans = 0x7fffffff, p, last;
    FOR(i,1,n) v[i] = i;
    while (n > 1) {
        p = last = 0;
        FOR(i,2,n) {
            dis[v[i]] = a[v[1]][v[i]];
            if (dis[v[i]] > dis[v[p]]) p = i;
        }
        FOR(i,2,n) vis[v[i]] = 0;
        vis[v[1]] = 1;
        FOR(i,2,n) {
            if (i == n) {
                ans = min(ans, dis[v[p]]);
                FOR(j,1,n) a[v[j]][v[last]] = a[v[last]][v[j]] += a[v[j]][v[p]];
                v[p] = v[n--];
            }
            vis[v[last = p]] = 1; p = -1;
            FOR(j,2,n) if (!vis[v[j]]) {
                dis[v[j]] += a[v[last]][v[j]];
                if (p == -1 || dis[v[p]] < dis[v[j]])
                    p = j;
            }
        }
    }
    return ans;
}

int main() {
    int n, m, u, v, w;
    while (scanf("%d%d", &n, &m) != EOF) {
        memset(a, 0, sizeof a);
        while (m--) {
            scanf("%d%d%d", &u, &v, &w);
            ++u; ++v;
            a[u][v] += w; a[v][u] += w;
        }
        printf("%d\n", stoer_wagner(n));
    }
    return 0;
}

Minimum Cut

Time Limit: 10000MS Memory Limit: 65536K
Total Submissions: 8588 Accepted: 3617
Case Time Limit: 5000MS

Description

Given an undirected graph, in which two vertices can be connected by multiple edges, what is the size of the minimum cut of the graph? i.e. how many edges must be removed at least to disconnect the graph into two subgraphs?

Input

Input contains multiple test cases. Each test case starts with two integers N and M (2 ≤ N ≤ 500, 0 ≤ M ≤ N × (N − 1) ⁄ 2) in one line, where N is the number of vertices. Following are M lines, each line contains M integers A, B and C (0 ≤ A, B < N, A ≠ B, C > 0), meaning that there C edges connecting vertices A and B.

Output

There is only one line for each test case, which contains the size of the minimum cut of the graph. If the graph is disconnected, print 0.

Sample Input

3 3
0 1 1
1 2 1
2 0 1
4 3
0 1 1
1 2 1
2 3 1
8 14
0 1 1
0 2 1
0 3 1
1 2 1
1 3 1
2 3 1
4 5 1
4 6 1
4 7 1
5 6 1
5 7 1
6 7 1
4 0 1
7 3 1

Sample Output

2
1
2
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值